Research assessment: Multimodal presentation

This sample is intended to inform the design of assessment instruments in the senior phase of learning. It highlights the qualities of student work and the match to the syllabus standards.

Dimensions assessed

- Acquiring
- Applying
- Evaluating

Assessment instrument

The response presented in this sample is in response to an assessment task.

Multimodal presentations are the outcome of research and may take a wide variety of forms.	Year 11 Research assessment: Analytical response/multimodal presentation
Integration is achieved by selecting a focus area that is relevant to, and contextualised within, the physical activity.	Physical activity category: Performance (canoeing)
Personalisation is achieved by relating the task to the student's personal experience.	Focus area: A
The requirement to research is clearly articulated in the task.	Type: Analytical exposition
The task is directed at the general objective of "evaluating" and the specific cognitive process of "justify".	Conditions: 3–5 minutes (Year 11) or 5–8 minutes (Year 12)
Context	**Task**
Throughout the canoeing and biomechanics unit, you have developed and refined your canoeing skills and your understanding of the biomechanical principles underpinning your performance. This process required you to detect errors in your technique and, through reflection and decision making, modify your performance.	Using footage or still images of your performance, as well as locating and using information related to biomechanics, justify your modifications to one selected canoeing skill, based on a biomechanical analysis of your technique.
Terminologies, principles and concepts are relevant to the focus area and physical performance.

The task guidelines provide advice to the students about how to follow the inquiry process. Language is aimed at the level of the students and directs them on how to write—not what to write.

Analysis of your selected skill should be based on the following biomechanical principles:

- force and motion
- momentum
- leverage
- fluid mechanics and principles of propulsion.

Guidelines

This independent inquiry asks you to analyse the biomechanical principles that underpin the modifications to your selected technique. To complete the task, follow these steps.

1. Select one canoeing skill for analysis, and establish the biomechanical problem requiring research.
2. Generate and collect primary and secondary information:
 a. Primary and secondary evidence should be collected to conduct your analysis and evaluation, as well as justify your recommendations.
 b. Primary evidence may include:
 i. footage of your performance that has been gathered throughout recent lessons
 ii. the “biomechanically ideal” technique that is effective in producing speed and power, or is helpful for endurance
 iii. research about the purpose of canoeing equipment to highlight aspects of your technique that are key to your analysis
 c. Use secondary evidence as further data needed to complete your evaluation.
3. Sort and analyse the information:
 a. When using research, remember to analyse (examine each biomechanical principle and study interrelationships between the principles) and evaluate (check for reliability and accuracy of) your researched evidence.
 b. Search for and locate a range of primary and secondary sources to critically use in your inquiry.
 c. Record your researched material in a clear and logical fashion, keeping an accurate record of all sources referred to, primary and secondary, print and digital. Use a separate set of pages to record your sources and constantly update it.
4. Develop research outcomes — recommendations with justification. Recommended modifications can be presented either in pre-recorded footage that you refer to in a recorded or spoken presentation, or by a physical demonstration. Make use of technology — visual, aural or print resources — to enhance your presentation.
Preparing and presenting your multimodal presentation

Construct a presentation that is in the appropriate genre, is fluent and coherent, is factually accurate, is clearly sourced throughout and provides a correctly formatted reference list.

When presenting your multimodal or spoken presentation you may use:

- visual, aural or print resources such as PowerPoint, video clips, a whiteboard and canoeing equipment for visual and aural impact
- palm cards, notes or a written text, if required, but remember to make good eye contact with the audience
- vocal features such as volume, pace, pitch, tone, articulation.

In your multimodal presentation, you must acknowledge all your sources, not just direct quotes. For example, include references on your PowerPoint presentation.

Student response — Standard A

- The link below is to a student response presented through spoken and visual modes. The video has been edited to provide evidence of the inquiry approach, followed in the student response.

 - A standard student response.
Instrument-specific standards

Note: Colour highlights show the quality words used to make judgments about standards.

Student responses have been matched to instrument-specific criteria and standards; those which best describe the student work in this sample are shown below. For more information about the syllabus dimensions and standards descriptors, see www.qsa.edu.au/11366.html#syllabus.

<table>
<thead>
<tr>
<th>Standard A</th>
<th>Standard B</th>
<th>Standard C</th>
<th>Standard D</th>
<th>Standard E</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acquiring</td>
<td>The student work has the following characteristics:</td>
</tr>
<tr>
<td>- in-depth comprehension of a wide range of terminologies, principles and concepts relevant to both biomechanics and canoeing</td>
<td>- comprehension of a range of terminologies, principles and concepts relevant to both biomechanics and canoeing</td>
<td>- comprehension of fundamental terminologies, principles and facts relevant to biomechanics and canoeing</td>
<td>- recollection and recognition of simple terminologies, principles or facts relevant to biomechanics and canoeing</td>
<td>- recognition of some information associated with biomechanics and canoeing</td>
</tr>
<tr>
<td>- sustained and accurate use of appropriate multimodal textual features.</td>
<td>- accurate use of appropriate multimodal textual features.</td>
<td>- use of appropriate multimodal textual features.</td>
<td>- use of multimodal textual features.</td>
<td>- use of texts.</td>
</tr>
<tr>
<td>Applying</td>
<td>The student work has the following characteristics:</td>
</tr>
<tr>
<td>- insightful, independent and appropriate analysis and application of biomechanical information to canoeing</td>
<td>- independent and appropriate analysis and application of biomechanical and canoeing information</td>
<td>- appropriate analysis and application of biomechanical information to canoeing</td>
<td>- comparison and categorisation of information relating to biomechanics and canoeing</td>
<td>- comparison or categorisation of information with assistance</td>
</tr>
<tr>
<td>- purposeful and effective selection, sequencing and organisation of relevant and substantial biomechanical and canoeing information.</td>
<td>- purposeful selection, sequencing and organisation of relevant and substantial biomechanical and canoeing information.</td>
<td>- suitable selection, sequencing and organisation of biomechanical and canoeing information.</td>
<td>- selection and sequencing of biomechanical and canoeing information.</td>
<td>- selection of basic biomechanical and canoeing information.</td>
</tr>
<tr>
<td>Evaluating</td>
<td>The student work has the following characteristics:</td>
</tr>
<tr>
<td>- discerning, convincingly justified and independent evaluations, solutions and recommendations concerning the biomechanical improvement of canoeing skills</td>
<td>- justified and independent evaluations, solutions and recommendations concerning the biomechanical improvement of canoeing skills</td>
<td>- defended evaluations and solutions concerning the biomechanical improvement of canoeing skills</td>
<td>- superficial evaluations or solutions concerning the biomechanical improvement of canoeing skills</td>
<td>- directed responses to problems concerning the biomechanical improvement of canoeing skills</td>
</tr>
<tr>
<td>- discerning and effective choice of communication strategies to enhance meaning and impact of the multimodal presentation.</td>
<td>- effective choice of communication strategies that enhance meaning and impact of the multimodal presentation.</td>
<td>- effective choice of communication strategies that convey meaning through the multimodal presentation.</td>
<td>- communication strategies that convey meaning through the multimodal</td>
<td>- communication of some meaning.</td>
</tr>
</tbody>
</table>

Textual features to consider for this multimodal task might include: spelling, grammar, punctuation, clarity, volume, pacing, still images and footage.

Task-specific language demonstrating integration of the related focus area and physical activity.

Choices of communication to consider for this multimodal task might include: selection of footage, still images, presentation format, style and techniques.