Mathematics A

2017 Senior External Examination — Subject notice 1

Information about the 2017 examination

The examination will be based on the *Mathematics A Senior External Syllabus 2006*. It will consist of two papers.

Paper	Perusal/planning time	Working time
One	10 minutes	3 hours
Two	10 minutes	3 hours

Each paper will contain four extended-response questions.

The following syllabus topics will be assessed.

Paper One

- Managing money 1
- Introduction to data and its presentation
- · Exploring and understanding data
- Maps and compasses navigation.

Paper Two

- Managing money 2
- Elements of applied geometry
- Linking two and three dimensions
- Operations research networks and queuing.

Assessment

Candidates should attempt every question in each paper.

Candidates' responses to questions in each paper will be judged against the syllabus exit criteria:

- Knowledge and procedures (KP)
- Modelling and problem solving (MP)
- Communication and justification (CJ).

For each candidate, a level of achievement will be determined by applying the syllabus standards to an overall assessment of responses across both Paper One and Paper Two.

Formulas

A resource book containing formulas will be provided with each paper. These formulas are attached.

Enquiries

Telephone (07) 3864 0211 or email externalexams@qcaa.qld.edu.au.

Formulas

Circumference of a circle

 $C = \pi D$

D = diameter

Area

Circle

$$A = \pi r^2$$

r = radius of the circle

Triangle

 $A = \frac{1}{2}bh$

b = base length

h = perpendicular height

Parallelogram

A = bh

b = base length

h = perpendicular height

Trapezium

$$A = \frac{1}{2}h(a+b)$$

a and b are parallel sides

h = perpendicular height

Sector

$$A = \frac{\theta}{360} \times \pi r^2$$

 θ = number of degrees in the central angle

Surface area

Sphere

$$A = 4\pi r^2$$

Closed cylinder

$$A = 2\pi r h + 2\pi r^2$$

Volume

r = radius of base

h = perpendicular height

A = base area

Cone

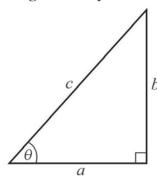
$$V = \frac{1}{3}\pi r^2 h$$

Sphere

$$V = \frac{4}{3}\pi r^3$$

Cylinder

$$V = \pi r^2 h$$


Pyramid

$$V = \frac{1}{3}Ah$$

Prism

$$V = Ah$$

Trigonometry

$$\sin\theta = \frac{b}{c}, \cos\theta = \frac{a}{c} \text{ and } \tan\theta = \frac{b}{a}$$

Pythagoras' theorem

$$c^2 = a^2 + b^2$$

Financial formulas

Simple interest

I = P r n

P = initial quantity

r = percentage interest rate per period expressed as a decimal

n =number of periods

Compound interest

 $A = P(1+r)^n$

A =final balance

P = initial quantity

r = percentage interest rate per compounding period expressed as a decimal

n =number of compounding periods

Diminishing value formula

$$S = V_0 (1 - r)^n$$

S =salvage value of an asset after n periods

 V_0 = initial value of the asset

r =percentage interest rate per period expressed as a decimal

n =number of periods

Percentage dividend

 $\frac{\text{Dividend per share}}{\text{Face value of share}} \times 100$

Percentage yield

 $\frac{\mathrm{Dividend\ per\ share}}{\mathrm{Market\ price\ per\ share}} \times 100$

Earth geometry

Great circle distance

Angle difference \times 111.2 km

Angle difference \times 60 nautical miles

Time

1° longitude difference = 4 minutes time difference

Navigation

1 nautical mile = 1.852 km