

Unpacking the Engineering subject report 2021 Internal assessment

Presenters

Brad Walmsley

PEO, Technologies Learning Area Unit

T +61 7 3864 0460

E Engineering@qcaa.qld.edu.au

Tony Muller

Chief Confirmer

Kay York Learning Area Manager, HPE Technologies T +61 7 3864 0480

E <u>HPEandTech@qcaa.qld.edu.au</u>

Learning goals

Learn how to use the QCAA Engineering subject report to inform teaching and assessment practice.

Success criteria

You will know you are successful if you can reflect purposefully on the information provided in the subject report to determine how you can improve your school's internal assessment in Engineering.

Locating the subject report

F

Government OCAA	Queensland Curriculum & Assessment Authority	Site map Contact us Help Search website Q
Home About us News & data PD	& events Kindergarten Prep-Year 10 Senior secondary	🔒 Logins
Home > Senior secondary > Senior subject	cts > Technologies > Engineering (2019) > Teaching & learning	
Technologies	Engineering General Senior Syllabus 201	.9: Teaching and learning
Learning area news	Version 1.1	
Aerospace Systems (2019)	Overview Syllabus Teaching Assessment Review	
Building & Construction Skills (2019)	Teaching and learning resources	
Design (2019)	Subject reports	
Digital Solutions (2019)	Year Resource	
Engineering (2019)	2020 <u>Subject report 2020 (PDF, 5.7 MB)</u>	
Engineering Skills (2019)	2021 Subject report 2021 (PDF, 3.1 MB)	
Fashion (2019)	2020 Subject reports factsheet 2020 (PDF, 170.2 KB)	
Food & Nutrition (2019)	2021 NEW Subject reports factsheet 2021 (PDF, 166.6 KB)	
Furnishing Skills (2019)		

Government QCAA Queensland Curriculum & Assessment Authority

Sections

Contents

Introduction	1
Audience and use	1
Report preparation	1
Subject data summary	2
Subject completion	
Units 1 and 2 results	
Units 3 and 4 internal assessment (IA) results	
Total marks for IA	2
IA1 marks	
IA2 marks	4
IA3 marks	5
External assessment (EA) marks	6
Final subject results	7
Final marks for IA and EA	7
Grade boundaries	7
Distribution of standards	7
Internal assessment	8
Endorsement	8
Confirmation	8
Internal assessment 1 (IA1)	<mark>10</mark>
Project — folio (25%)	10
Assessment design	10
Assessment decisions	12
Internal assessment 2 (IA2)	<mark>18</mark>
Examination — short response (25%)	
Assessment design	
Assessment decisions	20
Internal assessment 3 (IA3)	23
Project — folio (25%)	
Assessment design	23
Assessment decisions	25
External assessment	31
Examination — Short response (25%)	31
Assessment design	
Assessment decisions	31

Queensland Queensland Curriculum & Assessment Authority

The purpose of the subject report

2021 summative assessment cycle key outcomes:

- Quality assurance: Endorsement and Confirmation
- External assessment results

- Effective practices and practices to strengthen
 - Internal assessment
 - Assessment design (validity, accessibility)
 - Assessment decisions (reliability)
 - External assessment
 - Teaching and learning

Queensland Queensland Curriculum & Assessment Authority

Structure of the webinar

Subject data summary

Subject progress

Year	2020	2021
Growth of Year 12 cohort (+104)	1255	1359
Number of students achieving an A standard (+95)	168	263
Number of students achieving a B standard (+60)	386	446
Number of students achieving a C standard (-36)	576	540

Engineering is a growing subject with a larger number of students achieving an A standard in 2021.

What improvements have you seen at your school? Is there more interest in the subject?

Subject report reference: page 7

=

Percentage of instruments endorsed i	n Applicatior	า 1	
Number of instruments submitted	IA1	IA2	IA3
Total number of instruments	90	89	88
Percentage endorsed in Application 1	54%	28%	84%

Numbe	r of samples revie	ewed and percent	age agreement	
IA	Number of schools	Number of samples requested	Number of additional samples requested	Percentage agreement with provisional marks
1	89	496	154	71.91%
2	89	465	0	100%
3	89	482	164	60.67%

Project — folio: Iterative nature?

Why have a problem-solving process in Engineering?

For all Queensland schools

Project — folio (IA1 and IA3)

Assessment design: Effective practices

- Providing well thought out and detailed information about the real-world problem context
- The assessment was developed using local school structural problem contexts.

IA3

IA1

 Incorporating the requirement to use Unit 4 subject matter during problem-solving, including control technologies in relation to machines and mechanisms

Project — folio (IA1 and IA3) Assessment design : Practices to strengthen

IA1 and IA3

- The purpose of the prototype within the problem-solving process, i.e. the prototype supports development of the real-world related solution
- Group work is not a syllabus condition, i.e. individual response including prototype development and testing.
- Quality assure the information included in the instrument, e.g. scaling of the prototype — size and loading.

Project — folio (IA1): Assessment decisions

Agreemen	t trends between	provisional and co	onfirmed marks		
Criterion number	Criterion name	Percentage agreement with provisional	Percentage less than provisional	Percentage greater than provisional	Percentage both less and greater than provisional
1	Retrieving and comprehending	85.39%	12.36%	0%	2.25%
2	Analysing	77.53%	20.22%	0%	2.25%
3	Synthesising and evaluating	75.28%	20.22%	0%	4.49%
4	Communicating	85.39%	12.36%	1.12%	1.12%

What are the most important areas to strengthen?

Subject report reference: page 12

* **

Project — folio (IA1)

=

Retrieving and comprehending (4–5 marks)

- accurate and discriminating recognition and discerning description of the structural problem, engineering technology knowledge, and mechanics and materials science concepts and principles in relation to structures
- adept symbolisation and discerning explanation of ideas and a solution in relation to structures with sketches, drawings, diagrams, graphs, tables and/or schemas.

Excerpt 1

Strength of Balsa (prototype):

Only a compressive test data was needed to be used to determine the strength of the balsa as the truss member slenderness causes members to fail by buckling in compression at significantly lower values than tensile tests conducted previously. This is relevant, because it is reasonable also to assume that the primary forces in this tower will unavoidably be compressive. The compression test results showed that the long pieces of balsa tended to buckle and to address this issue, smaller balsa pieces would be needed to reduce the distance between the bracing points in the structure. By shortening unsupported member length (by adding braces) rapidly increases buckling resistance.

The data derived from the testing supported the statement that when the length is decreased the load the material can withstand increases. Thus, by halving the length of balsa it can be said that the members of the structure will be able to withstand higher loads.

Length	Average Compression
150 mm	2513g
125 mm	4160g
112.5mm	4525g

Project — folio (IA1)

=

Analysing (6–7 marks)	Exc	cerpt 3					
 astute determination of essential solution success criteria for 		Determining Su	iccess Criteria:		Success Crit Astute and Ess	t eria ential	1
the structural problem		Success Criteria	Subtopic If Applicable		Description	Code	Relation to prototype or real- world structure
		Strong	-	The stro with fron envi	structure needs to ng, and able to istand force applied n winds and ronment	SC1	Mostly real - world structure
		Efficient	-	The max with effo	structure achieves imum productivity minimum wasted rt	SC2	Both
		Aesthetic	-	The aest its c	structure is hetically pleasing to lient	SC3	Mostly real - world structure
		Compliance	-	The spec requ	structure meets the cifications that are uested by the client	SC4	Both
			Material	The effic cost	material used is ient in the aspect of	SC5.1	Both
		Cost-effective	Structure	The use com effe	structure does not too many ponents to be cost ctive	SC5.2	Most - real world structure
		Easy to construct	-	The relations	structure is tively easy to struct	SC6	Both
		Sustainable	-	The be n cert	structure is able to naintained to ain level	SC7	Real - world structure

Queensland QCAA Queensland Curriculum & Assessment Authority

Project — folio (IA1)

 (8-9 marks) critical evaluation and discerning refinement of ideas and a solution using success criteria to make astute recommendations justified by data and research evidence Real-world tower evaluation: The real-world design will be manufactured and constructed different to the prototype that was made for testing. Firstly, the material used was be completely different, and the production method will be changed allow an efficient and economic product (SC2). The best material for be the tower and tank will be steel. As researched above, 'Steel is the bio option for a truss tower and the tank, as it is strong, cheap, a maintainable' (SC1, SC5.1 & SC10). 	ntly will to oth
 critical evaluation and discerning refinement of ideas and a solution using success criteria to make astute recommendations justified by data and research evidence The real-world design will be manufactured and constructed different to the prototype that was made for testing. Firstly, the material used we be completely different, and the production method will be changed allow an efficient and economic product (SC2). The best material for be the tower and tank will be steel. As researched above, 'Steel is the be option for a truss tower and the tank, as it is strong, cheap, a maintainable' (SC1, SC5.1 & SC10). The steel used for the structure will: 	ntly will to oth
 Be coated to resist corrosion from environment Be protected from UV rays Withstand the different weather that occurs in the proposilocation The structure will use a simple 'K truss' design; therefore, it will be easily to construct and aesthetic (SC3 & SC6). The joints will be supported galvanised steel gussets to structure is strong and safe (SC1 & SC9). The structure will be manufactured in a rural town close to the site, and the structure will be manufactured in a rural town close to the site. 	est and sed by The the

Government OCCAA Queensland Curriculum & Assessment Authority

Project — folio (IA3): Assessment decisions

Criterion number	Criterion name	Percentage agreement with provisional	Percentage less than provisional	Percentage greater than provisional	Percentage both less and greater than provisional
1	Retrieving and comprehending	80.9%	16.85%	0%	2.25%
2	Analysing	69.66%	28.09%	0%	2.25%
3	Synthesising and evaluating	62.92%	35.96%	0%	1.12%
4	Communicating	89.89%	10.11%	0%	0%

What are the most important areas to strengthen?

Subject report reference: page 25

= Project — folio (IA3)

Analyzing			
(6–7 marks)	Excerpt 1		
 insightful analysis of 	Basic Calculations &	& Mechanical Considera	ations
the machine and/or mechanism problem, and relevant	Figure 2: Energy, Work,	Force and Power Calculation	ons
engineering	*	B	
mechanics, materials science, control	1930	Potential Energy at B	The calculation for 10 kg bags
technologies, technology, and	(H=0.5m)	C_{b} PE = mgh = 20 × 9.8 × 1.2	values are stated below:
research information in relation to	Pr.	= 235.2 J	∆Potential Energy = 68.6 J (Work)
machines and/or	Polontial Eheropy at A	work = change in Energy	Power = 11.43 W
identify the relevant	(> PE = mah	W = Acherojj	
elements,	= 20×9.8×0.5	- 235.2-98	F = 57.17 N
components and	= 98 J	= 137.2 J	
features, and their relationship to the	Time taken to reach the height of 1.2m from 0.	Work = Force X dis Sin 137.2 = F.X 1.2	tance
structure of the	Lo Length of conveyor lin	$F = \frac{137.2}{1.2}$	
problem	= 1.2 m	(constraint) :. F = 114.3 N	
	Time = distance = 1	Power = work =	137.2
	speed o	= 22.87 W	-
	As the bag travels up on th	he incline, the potential energy	v changes (figure
	2) – however, kinetic er	nergy remains the same as	s the velocity is
	consistant. The change in	n energy means there is 'wo	rk' that is taking
	place; this is occuring at t	the gears of the inclined conv	veyor. The force,
	114.3 N, is representative	of the gear's effort. Figure 2	2 also shows the
	power required for the gea	ars to maintain the constant vi	eocity of 0.2 m/s.
	not include the scenario o	f when the 10 kg bag is also	on the conveyor
	which will increase the po	wer required.	on the conveyor,

Queensland QCAA Queensland Curriculum & Assessment Authority

Project — folio (IA3)

Analysing (6–7 marks)	Excerpt 2
astute determination	Solution Success Criteria (SSC)
of essential solution success criteria for the machine and/or mechanism problem	 First Priorities: most essential qualities that must be included for the completion of the task. The solution must accommodate the addition of 10 kg cement bags in the original system because the task is to increase their production rate by at least 50%. The conveyor belt must have two separate discharging areas for 10 kg and 20 kg bags with a mechanical control system. It should also provide a 'fail area', where if in case the system fails to operate, the bags disembark in an area where they would be manual separated. This would minimise the chances of any bags being separated in a different zone (e.g., if 10 kg bags accidently are sorted in the 20 kg zone). There must be at least one electronic logic gate system incorporated in this report – to ensure the bags from the bagging machines do not collide with each other and are only dropped on the conveyor belt when all the hazards are assessed. The addition of a guiding box under both cement bagging machines (according to their dimensions) will be a priority. This will assist in correct placement of bags on conveyor and also ease the separation process. The task requires the exploration and possibly the change of paper bags to plastic bags – this reduces mass, enhances sealing, and provides greater benefits (especially in outdoor storage – wet conditions).
	Second Priorities: these are gualities that would enhance the solution and its performance.
	 Materials used in this project (such as conveyor materials, bags, etc.) must be environmentally friendly, in terms of recyclability and increased material lifespan.
	 By adding a mass detecting device/scale, the quantity of the cement bags can be ensured; additionally, it could also assist in easing the operation of the mechanical control arm for separation (if the device detects the mass to be 10 kg, then the mechanical arm assigned to discharge those bags will operate – instead of relying on time).
	 Doubling the velocity (from 0.2 to 0.4 m/s) by altering gear ratios (as the task offers) will increase production and assist in achieving the 50% (or more) increase in output.

Government OCCAA Queensland Curriculum & Assessment Authority

Project — folio (IA3)

Synthesising and evaluating (8–9 marks)

 critical evaluation and discerning refinement of ideas and a solution using success criteria to make astute recommendations justified by data and research evidence

Excerpt 4

Refining Solution & Further Calculations

During the prototype simulation stage, it was seen that it takes more energy to push the bag to the separation zone when it is parallel to the ground. To ease this process, it was decided that the separation zone would be set on an incline – however, this would impact the final height set by the project. To resolve this issue the total height by the end of the conveyor would be 1.5m. The decline at the separation zone will be from 1.5 m to 1.2 m, at an angle of 30°. This will allow gravity to assist with the separation of the bag. In terms of slowing the bag's velocity (to get it to rest), the friction of that surface will be increased. The calculations and diagrams in figure 18 show the refined and enhanced solution to the task. In order to perform the calculations using the equations of motion, the velocity of the bag after contacted by the mechanism is important to determine; this is done in figure 17.

Project — folio (IA3)

Ţ

Synthesising and evaluating (8–9 marks)

 coherent and logical synthesis of relevant engineering mechanics, materials science, control technologies, technology and research information, and ideas to predict a possible machine and/or mechanism solution

Queensland Queensland Curriculum & Assessment Authority

Project — folio (IA1 and IA3)

Additional advice

- Response length
- Appendices
- Evidence of class-wide protype performance data
- Ensure all pages are scanned in pdf files and are in order and orientated correctly before uploading

Assessment design: Effective practices

- Marks allocated to each question type reflected the degree of difficulty.
- Cognitions aligned with the question type and required response.

Examination (IA2)

Assessment design: Practices to strengthen

- Subject matter from Unit 1 and 2 should not be included.
- Include diagrams only when necessary.
- Diagrams are accurate.

Examination (IA2): Assessment decisions

Agreement trends between provisional and confirmed marks					
Criterion number	Criterion name	Percentage agreement with provisional	Percentage less than provisional	Percentage greater than provisional	Percentage both less and greater than provisional
1	Engineering knowledge and problem-solving	100%	0%	0%	0%

What are the most important areas to strengthen?

Subject report reference: page 20

Examination (IA2)

Assessment decisions: Effective practices

- Marking schemes were well presented and clear.
- Marking schemes were consistently applied across the cohort.

Examination (IA2)

Examination (IA2)

Assessment decisions: Practices to strengthen

- Update marking schemes to reflect their use.
- Clear use of half marks
- Correct use of percentage cut-offs
- Provide information to reflect the decisions the school has made regarding the marks awarded, i.e. 53/75 = 70.7% = 17.

Additional advice

• Ensure all pages are scanned in pdf files and are in order and orientated correctly before uploading.

Questions

Consider strategies to ensure that students:

- have a clear understanding and ability to apply Unit 4 subject matter
- read the question and attempt to respond

Email questions to: engineering@qcaa.qld.edu.au

Learning goals

Learn how to use the QCAA Engineering subject report to inform teaching and assessment practice.

Success criteria

You will know you are successful if you can reflect purposefully on the information provided in the subject report to determine how you can improve your school's internal assessment in Engineering.

Contact details

Brad Walmsley

PEO, Technologies Learning Area Unit

T +61 7 3864 0460

E Engineering@qcaa.qld.edu.au

Kay York

Learning Area Manager, HPE Technologies

T +61 7 3864 0480

E HPEandTech@qcaa.qld.edu.au

QCAA social media

www.facebook.com/qcaa.qld.edu.au

twitter.com/QCAA_edu

www.youtube.com/user/TheQCAA

www.pinterest.com/QCAA_edu

www.linkedin.com/company/queenslandcurriculum-and-assessment-authority

www.instagram.com/myqce/

Queensland OCAA Queensland Curriculum & Assessment Authority