Engineering

General instruction

- Work in this book will not be marked.

Section 1

QUESTION 1

What is the gear ratio of this worm and wheel?
(A) 1:6
(B) $6: 3$
(C) $18: 1$
(D) $18: 3$

QUESTION 2

A 25 kg block is pulled up an incline using a force P as shown. What is the minimum value of P required to just move the box from rest if the coefficient of static friction is 0.4 ?
(A) 192.3 N
(B) 103.5 N
(C) 41.4 N
(D) 14.7 N

QUESTION 3

What is the hypo-eutectoid formation indicated by the arrow in this carbon steel microstructure?
(A) ferrite
(B) pearlite
(C) austenite
(D) cementite

QUESTION 4

High-voltage transmission cable insulation would most likely be manufactured from
(A) polyvinyl chloride.
(B) polypropylene.
(C) polyethylene.
(D) polystyrene.

QUESTION 5

not drawn to scale

Screw conveyor specifications				
Screw pitch	Screw length	Capacity moved per individual screw	Conveyor rpm	
150 mm	2400 mm	$0.15 \mathrm{~m}^{3}$	10	

A screw conveyor is used to transport grain from an input chute up a 10° slope to a holding bin using the specifications shown. What is the volume of grain moved each minute?
(A) $225 \mathrm{~m}^{3}$
(B) $24 \mathrm{~m}^{3}$
(C) $2.4 \mathrm{~m}^{3}$
(D) $1.5 \mathrm{~m}^{3}$

QUESTION 6

An irrigation system uses a 7450 W electric motor to drive a pump that delivers 10000 L of water per hour over a distance of 100 m . How efficient is the irrigation system? Assume that the system is without friction and that 1 L of water has a mass of 1 kg .
(A) 45%
(B) 37%
(C) 27%
(D) 10%

QUESTION 7

A 20 kg box sits just on the point of sliding on an incline plane. If the coefficient of static friction is 0.27 , what is the angle of repose?
(A) 5°
(B) 13°
(C) 15°
(D) 16°

QUESTION 8

The truth table that corresponds to this logic gate is
(A)
(B)
(C)
(D)

\mathbf{P}	\mathbf{Q}	\mathbf{F}
0	0	0
0	1	1
1	0	1
1	1	0

\mathbf{P}	\mathbf{Q}	\mathbf{F}
0	0	0
0	1	0
1	0	0
1	1	1

\mathbf{P}	\mathbf{Q}	\mathbf{F}
0	0	1
0	1	1
1	0	1
1	1	0

\mathbf{P}	\mathbf{Q}	\mathbf{F}
0	0	1
0	1	0
1	0	0
1	1	0

QUESTION 9

A bicycle has gearing with a VR of 1:3. The rear tyre has an outside diameter of 740 mm . What is the distance travelled for every three rotations of the foot pedals?
(A) 42 m
(B) 21 m
(C) 7 m
(D) 2 m

QUESTION 10

The key feature indicated by the arrow in this mild steel stress-strain diagram is
(A) ultimate tensile stress.
(B) Young's modulus.
(C) plastic limit.
(D) yield stress.

References

Question 10

Adapted from Breakdown 2008, Typical stress vs. strain diagram for a ductile material (e.g. steel), Wikimedia Commons, https://commons.wikimedia.org/wiki/File:Stress_Strain_Ductile_Material.png Available under the Creative Commons Attribution-Share Alike 3.0 Unported license.

Licence: https://creativecommons.org/licenses/by/4.0 | Copyright notice: www.qcaa.qld.edu.au/copyright — lists the full terms and conditions, which specify certain exceptions to the licence. Third-party materials referenced above are excluded from this licence. |
Attribution: © State of Queensland (QCAA) 2020

