Sample assessment 2020

Multiple choice question book

Digital Solutions

Queensland Curriculum & Assessment Authority

THIS PAGE IS INTENTIONALLY BLANK

Section 1

Instructions

- Answer all questions in the question and response book.
- This book will not be marked.

QUESTION 1

In data security, a hash function can be described as a

- (A) one-way cryptographic algorithm that takes an input message of arbitrary length and produces a fixed-length digest.
- (B) cryptographic algorithm that performs the encryption or decryption of an input message of arbitrary length for output or storage.
- (C) feature that dynamically negotiates a mutual set of security requirements between two hosts that are attempting to communicate with each other.
- (D) process of masking password user input with hashes, asterisks or other special characters.

QUESTION 2

A website's content and functionality was evaluated using the following four criteria:

- operable, e.g. the website should be navigable without a mouse and with a screen reader
- perceivable, e.g. images should have text equivalents
- robust, e.g. the website should work with different devices and navigation should be consistent
- **understandable**, e.g. text should not be more complicated than it needs to be and the website should operate in a predictable manner.

Identify the useability principle tested by the four criteria above.

- (A) effectiveness
- (B) accessibility
- (C) learnability
- (D) utility

QUESTION 3

The following algorithm is used to produce an output based on different input data values.

BEGIN

```
IF value1 > value2
    PRINT "A"
ELSE
    IF value3 ≤ (value1 + value2)
        PRINT "B"
    ELSE
        PRINT "C"
    ENDIF
ENDIF
IF (value3 - value1) ≥ value2
        PRINT "D"
ENDIF
```

END

Identify the output produced by the algorithm when value1 = 7, value2 = 8 and value3 = 15.

- (A) AD
- (B) BC
- (C) CD
- (D) BD

QUESTION 4

The table below shows two algorithms.

Program 1	Program 2
BEGIN Main	BEGIN Main
num1 = 50	numl is global
Sub()	num1 = 50
PRINT num1	Sub()
END Main	PRINT numl
	END Main
BEGIN Sub	
num1 is local	BEGIN Sub
num1 = 20	num1 = 20
END Sub	END Sub

Select the correct output when both programs are run.

	Program 1	Program 2
(A)	50	20
(B)	50	50
(C)	20	50
(D)	20	20

QUESTION 5

JSON uses human-readable text to transmit data objects.

```
{ "name":"John" }
{ "age":30 }
{ "employees":[ "John", "Anna", "Peter" ]}
{ "sale":true }
```

The JSON data types in the code above would be declared as

- (A) John, 30, John, Sale.
- (B) name, age, employees, sale.
- (C) char, number, list, true/false.
- (D) string, integer, array of strings, Boolean.

QUESTION 6

The following algorithm produces an output from input data.

Main program

BEGIN

```
var1 = "4"
var3 = 3
process3()
process2(var3)
process1()
```

END

Sub process1 ()

BEGIN

PRINT var1 + "4"

Sub **END**

Sub process2 (var2)

BEGIN

PRINT 4 + var2

Sub **END**

Sub process3 ()

BEGIN

PRINT var3 / 3

Sub **END**

The output of the pseudocode will be

- (A) 1744.
- (B) 1544.
- (C) 178.
- (D) 158.

QUESTION 7

Many symmetric encryption algorithms, including the Data Encryption Standard (DES), use a structure commonly referred to as a Feistel network. Feistel networks have a symmetric structure used in the construction of block ciphers.

The structure of a Feistel network is best described as a

- (A) cipher that uses public and private keys for secure encryption across networks.
- (B) cipher that uses a process of character substitution to encrypt or decrypt the same block of data.
- (C) very similar or identical set of iterative structural processes to encrypt or decrypt the same block of data.
- (D) structural process where plain text digits are combined with a stream of pseudorandom cipher digits.

QUESTION 8

Examine the following data flow diagram for a business that makes and sells widgets.

From the diagram, which of the following statements is most correct?

- (A) Production receives input based on other processes and entities.
- (B) This business consists of four main processes and three entities.
- (C) The sale process receives input from multiple sources.
- (D) Employees provide information to support the sale.

QUESTION 9

The following extract from a medical database shows patients, vaccines by item number, date vaccination is due, date immunised and the risk of contracting the disease post-immunisation.

Patients		Results					
ID	First	Last	_	Item	ID	Immunised	Risk
1684	John	Jones		1	1684	1990-09-08	0.001
2893	Mary	Smith		1	2893	1990-09-07	0.00021
3642	Jackie	Joyce		1	1206	1990-09-08	0.0005
1206	Michael	Mentos		1	1934	1990-09-10	0.001
1910	Midori	Ono		1	1935	1990-09-06	0.0005
1934	Beatrice	Thompson		1	3642	1990-09-09	0.00021
1935	Wanda	Granger	_	2	1684	1990-10-21	0.0005
				2	3642	1990-10-22	0.001
				2	1934	1990-10-21	0.0005
				2	2893	1990-10-22	0.0006
				2	1935	1990-10-21	0.00021
				3	3642	1990-12-10	0.0007
Assess	5			3	1934	1990-12-08	0.001
Item	Vaccine	Risk	Due	3	2893	1990-11-30	0.0014
1	Measles	0.001	1990-09-08	3	1935	1990-11-30	0.00021
2	Polio	0.00021	1990-10-21	3	1684	1990-12-07	0.001
3	Tetanus	0.0005	1990-12-02	3	1206	1990-12-11	0.004

```
SELECT first, last, immunised
FROM results r
    INNER JOIN assess a ON r.item = a.item
    INNER JOIN patients p ON p.id = r.id
WHERE a.item in (1,2)
    AND r.immunised < a.due ;</pre>
```

The query above determines

- (A) the first name, last name and immunisation date for all patients who received items before they were due.
- (B) the first name, last name and immunisation date for patients who received Items 1 and 2 after they were due.
- (C) the first name, last name and immunisation date for patients who received Item 1 or Item 2 before it was due.
- (D) the first name, last name and immunisation date for patients who received Items 1 and 2 before they were due.

QUESTION 10

The two algorithms below are for the 'fizzbuzz' test. The algorithms evaluate numbers between 1 and 100 and print:

• 'fizz' if the number is a factor of 3

OR

- 'buzz' if the number is a factor of 5 OR
- 'fizzbuzz' if the number is a factor of both 3 and 5 OR
- the original number if the number is a factor of neither 3 nor 5.

Algorithm 1	Algorithm 2			
BEGIN	BEGIN			
FOR i = 1 to 100	i = 1 WHILE i <= 100			
IF i modulus $3 = 0$	IF i modulus $3 = 0$			
PRINT "fizz"	PRINT "fizz" ENDIF			
ENDIF	IF i modulus $5 = 0$			
IF i modulus $5 = 0$	PRINT "buzz"			
PRINT "buzz"	ENDIF IF NOT i modulus 3 = 0			
ENDIF	AND NOT i modulus 5 = 0			
IF i modulus $5 = 0$ and i modulus $3 = 0$	PRINT 1 PRINT new line i = i + 1			
PRINT "fizzbuzz"	ENDIF			
ELSE	ENDWHILE			
PRINT i	END			
ENDIF				
PRINT new line				
NEXT				
END				

The algorithms were evaluated against the criteria of accuracy and reliability.

Examine the algorithms and choose the statement that is true.

- (A) Algorithm 1 is more reliable than Algorithm 2.
- (B) Algorithm 2 is more reliable than Algorithm 1.
- (C) Algorithm 1 is more accurate than Algorithm 2.
- (D) Algorithm 2 is more accurate than Algorithm 1.

THIS PAGE IS INTENTIONALLY BLANK

THIS PAGE IS INTENTIONALLY BLANK