Public use

Digital Solutions

THIS PAGE IS INTENTIONALLY BLANK

- Public use

Section 1

Instructions

- Answer all questions in the question and response book.
- This book will not be marked.

QUESTION 1

In data security, a hash function can be described as a
(A) one-way cryptographic algorithm that takes an input message of arbitrary length and produces a fixed-length digest.
(B) cryptographic algorithm that performs the encryption or decryption of an input message of arbitrary length for output or storage.
(C) feature that dynamically negotiates a mutual set of security requirements between two hosts that are attempting to communicate with each other.
(D) process of masking password user input with hashes, asterisks or other special characters.

QUESTION 2

A website's content and functionality was evaluated using the following four criteria:

- operable, e.g. the website should be navigable without a mouse and with a screen reader
- perceivable, e.g. images should have text equivalents
- robust, e.g. the website should work with different devices and navigation should be consistent
- understandable, e.g. text should not be more complicated than it needs to be and the website should operate in a predictable manner.

Identify the useability principle tested by the four criteria above.
(A) effectiveness
(B) accessibility
(C) learnability
(D) utility

- Public use -

QUESTION 3

The following algorithm is used to produce an output based on different input data values.

```
BEGIN
    IF value1 > value2
        PRINT "A"
    ELSE
        IF value3 \leq (value1 + value2)
            PRINT "B"
        ELSE
            PRINT "C"
        ENDIF
    ENDIF
    IF (value3 - value1) \geq value2
        PRINT "D"
    ENDIF
END
```

Identify the output produced by the algorithm when value $1=7$, value $2=8$ and value $3=15$.
(A) AD
(B) BC
(C) CD
(D) BD

QUESTION 4

The table below shows two algorithms.

Program 1	Program 2
BEGIN Main num1 = 50 Sub () PRINT num1	BEGIN Main num1 is global num1 = 50 Sub ()
END Main	PRINT num1 END Main
```BEGIN Sub num1 is local num1 = 20 END Sub```	BEGIN Sub num1 = 20   END Sub

Select the correct output when both programs are run.

## Program 1 Program 2

(A) $50 \quad 20$
(B) $50 \quad 50$
(C) $20 \quad 50$
(D) $20 \quad 20$

## QUESTION 5

JSON uses human-readable text to transmit data objects.

```
{ "name":"John" }
{ "age":30 }
{ "employees":["John", "Anna", "Peter"]}
{ "sale":true }
```

The JSON data types in the code above would be declared as
(A) John, 30, John, Sale.
(B) name, age, employees, sale.
(C) char, number, list, true/false.
(D) string, integer, array of strings, Boolean.

## QUESTION 6

The following algorithm produces an output from input data.

## Main program

BEGIN

```
 var1 = "4"
 var3 = 3
```

    process3()
    process2 (var3)
    process1()
    END
Sub process1 ()
BEGIN
PRINT var1 + "4"
Sub
END

Sub process2 (var2)
BEGIN
PRINT 4 + var2
Sub END

Sub process3 ()
BEGIN
PRINT var3 / 3
Sub END

The output of the pseudocode will be
(A) 1744 .
(B) 1544 .
(C) 178 .
(D) 158 .

## - Public use

## QUESTION 7

Many symmetric encryption algorithms, including the Data Encryption Standard (DES), use a structure commonly referred to as a Feistel network. Feistel networks have a symmetric structure used in the construction of block ciphers.

The structure of a Feistel network is best described as a
(A) cipher that uses public and private keys for secure encryption across networks.
(B) cipher that uses a process of character substitution to encrypt or decrypt the same block of data.
(C) very similar or identical set of iterative structural processes to encrypt or decrypt the same block of data.
(D) structural process where plain text digits are combined with a stream of pseudorandom cipher digits.

## QUESTION 8

Examine the following data flow diagram for a business that makes and sells widgets.


From the diagram, which of the following statements is most correct?
(A) Production receives input based on other processes and entities.
(B) This business consists of four main processes and three entities.
(C) The sale process receives input from multiple sources.
(D) Employees provide information to support the sale.

## Public use

## QUESTION 9

The following extract from a medical database shows patients, vaccines by item number, date vaccination is due, date immunised and the risk of contracting the disease post-immunisation.

Patients		
ID	First	Last
1684	John	Jones
2893	Mary	Smith
3642	Jackie	Joyce
1206	Michael	Mentos
1910	Midori	Ono
1934	Beatrice	Thompson
1935	Wanda	Granger

Assess

Item	Vaccine	Risk	Due
1	Measles	0.001	$1990-09-08$
2	Polio	0.00021	$1990-10-21$
3	Tetanus	0.0005	$1990-12-02$


Results			
Item	ID	Immunised	Risk
1	1684	$1990-09-08$	0.001
1	2893	$1990-09-07$	0.00021
1	1206	$1990-09-08$	0.0005
1	1934	$1990-09-10$	0.001
1	1935	$1990-09-06$	0.0005
1	3642	$1990-09-09$	0.00021
2	1684	$1990-10-21$	0.0005
2	3642	$1990-10-22$	0.001
2	1934	$1990-10-21$	0.0005
2	2893	$1990-10-22$	0.0006
2	1935	$1990-10-21$	0.00021
3	3642	$1990-12-10$	0.0007
3	1934	$1990-12-08$	0.001
3	2893	$1990-11-30$	0.0014
3	1935	$1990-11-30$	0.00021
3	1684	$1990-12-07$	0.001
3	1206	$1990-12-11$	0.004

SELECT first, last, immunised
FROM results r
INNER JOIN assess a ON r.item = a.item
INNER JOIN patients $p$ ON p.id $=r . i d$
WHERE a.item in (1,2)
AND r.immunised < a.due ;

The query above determines
(A) the first name, last name and immunisation date for all patients who received items before they were due.
(B) the first name, last name and immunisation date for patients who received Items 1 and 2 after they were due.
(C) the first name, last name and immunisation date for patients who received Item 1 or Item 2 before it was due.
(D) the first name, last name and immunisation date for patients who received Items 1 and 2 before they were due.

## - Public use

## QUESTION 10

The two algorithms below are for the 'fizzbuzz' test. The algorithms evaluate numbers between 1 and 100 and print:

- 'fizz' if the number is a factor of 3

OR

- 'buzz' if the number is a factor of 5

OR

- 'fizzbuzz' if the number is a factor of both 3 and 5

OR

- the original number if the number is a factor of neither 3 nor 5 .

Algorithm 1	Algorithm 2
```BEGIN FOR i = 1 to 100 IF i modulus 3 = 0 PRINT "fizz" ENDIF IF i modulus 5 = 0 PRINT "buzz" ENDIF IF i modulus 5 = 0 and i modulus 3 = 0 PRINT "fizzbuzz" ELSE PRINT i ENDIF PRINT new line``` NEXT	```BEGIN i = 1 WHILE i <= 100 IF i modulus 3 = 0 PRINT "fizz" ENDIF IF i modulus 5 = 0 PRINT "buzz" ENDIF IF NOT i modulus 3 = 0 AND NOT i modulus 5 = 0 PRINT i PRINT new line i = i + 1 ENDIF ENDWHILE END```
END	

The algorithms were evaluated against the criteria of accuracy and reliability.
Examine the algorithms and choose the statement that is true.
(A) Algorithm 1 is more reliable than Algorithm 2.
(B) Algorithm 2 is more reliable than Algorithm 1.
(C) Algorithm 1 is more accurate than Algorithm 2.
(D) Algorithm 2 is more accurate than Algorithm 1.

THIS PAGE IS INTENTIONALLY BLANK

THIS PAGE IS INTENTIONALLY BLANK
— Public use -

