# Aerospace Systems marking guide and response

External assessment 2022

#### **Combination response (80 marks)**

#### **Assessment objectives**

This assessment instrument is used to determine student achievement in the following objectives:

- 1. recognise and describe problems, aerospace technology knowledge, concepts and principles, and systems thinking habits and systems thinking strategies in relation to aircraft performance systems and human factors
- 2. symbolise and explain ideas, solutions and relationships in relation to aircraft performance systems and human factors
- 3. analyse problems and information in relation to aircraft performance systems and human factors
- 5. synthesise information and ideas to propose possible aircraft performance systems and human factors solutions
- 7. evaluate and refine ideas and solutions to make justified recommendations.

Note: Objectives 4, 6 and 8 are not assessed in this instrument.





# Purpose

This document consists of a marking guide and a sample response.

The marking guide:

- provides a tool for calibrating external assessment markers to ensure reliability of results
- indicates the correlation, for each question, between mark allocation and qualities at each level of the mark range
- informs schools and students about how marks are matched to qualities in student responses.

The sample response:

- demonstrates the qualities of a high-level response
- has been annotated using the EAMG.

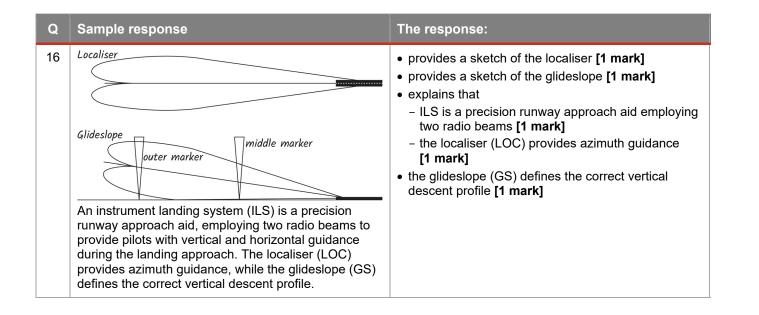
## Mark allocation

Where a response does not meet any of the descriptors for a question or a criterion, a mark of '0' will be recorded.

Where no response to a question has been made, a mark of 'N' will be recorded.

Allowing for FT error — refers to 'follow through', where an error in the prior section of working is used later in the response, a mark (or marks) for the rest of the response can be awarded so long as it still demonstrates the correct conceptual understanding or skill in the rest of the response.

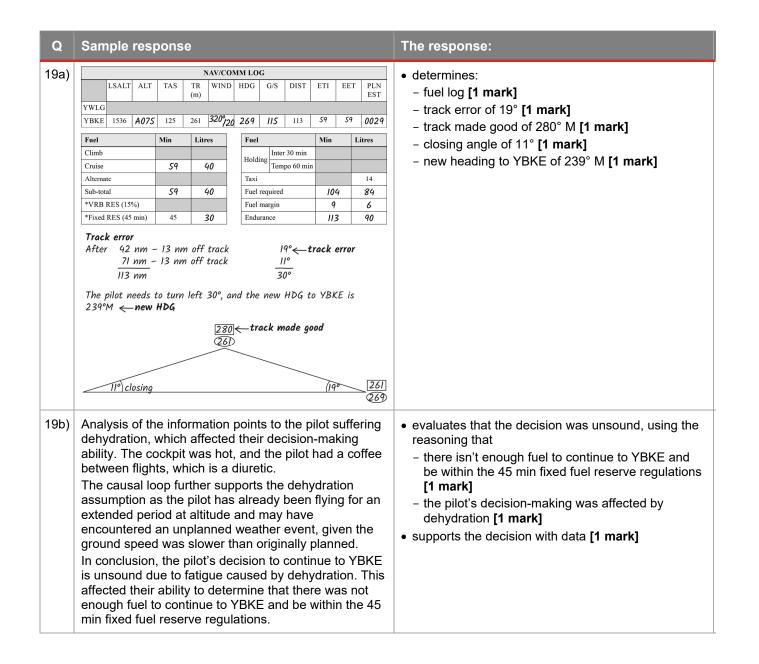
# Marking guide


#### Multiple choice

| Question | Response |
|----------|----------|
| 1        | D        |
| 2        | В        |
| 3        | А        |
| 4        | В        |
| 5        | А        |
| 6        | D        |
| 7        | С        |
| 8        | D        |
| 9        | С        |
| 10       | В        |

#### Short response

| Q  | Sample response                                                                                                                                                                                                                                                                                                                       | The response:                                                                                                                                                                                                                                                                                            |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 11 | QNH = 1007 hPa<br>Outside air temperature (OAT) = 24 °C<br>Pressure altitude = airfield elevation+(ISA<br>pressure–QNH) × 30<br>Pa = 21ft + (1013hPa – 1007 hPa) × 30<br>Pa = 21ft + (6) × 30<br>Pa = 201ft<br>Density altitude = pressure altitude + [120 × (OAT–<br>ISA Temp)]<br>Da = 201 + [120 × (24°C - 15 °C)]<br>Da = 1281 ft | <ul> <li>determines</li> <li>QNH of 1007 hPa [1 mark]</li> <li>OAT of 24 °C [1 mark]</li> <li>pressure altitude [1 mark]</li> <li>density altitude [1 mark]</li> </ul>                                                                                                                                   |
| 12 | <ol> <li>binocular vision</li> <li>empty field myopia</li> <li>effects of low oxygen</li> <li>illusions</li> <li>perceptions</li> <li>scanning</li> </ol>                                                                                                                                                                             | <ul> <li>provides one vision issue [1 mark]</li> <li>provides a second vision issue [1 mark]</li> <li>provides a third vision issue [1 mark]</li> <li>provides a fourth vision issue [1 mark]</li> <li>provides a fifth vision issue [1 mark]</li> <li>provides a sixth vision issue [1 mark]</li> </ul> |
| 13 | Turbofan engines are preferred for medium- and long-<br>range airliners. Aircraft equipped with turbofan<br>engines attain a higher maximum speed than aircraft<br>equipped with a turboprop engine. Turbofans are also<br>usually more efficient than turbojets at subsonic<br>speeds.                                               | <ul> <li>identifies that turbofan engines are preferred<br/>[1 mark]</li> <li>provides one reason why turbofan engines are<br/>preferred [1 mark]</li> <li>provides a second reason why turbofan engines are<br/>preferred [1 mark]</li> </ul>                                                           |


| Q    | Sample response                                                                                                                                                                                                                                                                                                                                                 | The response:                                                                                                                                                                                                                                                                   |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 14a) | RWY 04/22 = sealed 1428 metres<br>RWY 14/32 = unsealed (gravel) 829 metres<br>Hazard = bird hazard                                                                                                                                                                                                                                                              | <ul> <li>identifies one runway length in metres [1 mark]</li> <li>identifies another runway length in metres [1 mark]</li> <li>identifies a potential hazard [1 mark]</li> </ul>                                                                                                |
| 14b) | RWY 04/22 is most appropriate as the tyre pressure<br>of the Saab 340 exceeds the tyre pressure limits of<br>RWY 14/32.                                                                                                                                                                                                                                         | <ul> <li>determines RWY 04/22 as the most appropriate runway for landing and take-off [1 mark]</li> <li>provides a reasoned explanation [1 mark]</li> </ul>                                                                                                                     |
| 15   | Three factors adversely affecting situational<br>awareness in this scenario are:<br>• attention narrowing<br>• stress/high workload<br>• distractions and interruptions.<br>The captain and first officer's decision-making is most<br>likely affected because of stress caused by the<br>critically low fuel in the aircraft due to an unforeseen<br>headwind. | <ul> <li>provides one situational awareness factor [1 mark]</li> <li>provides a second situational awareness factor [1 mark]</li> <li>provides a third situational awareness factor [1 mark]</li> <li>explains how one factor leads to poor decision-making [1 mark]</li> </ul> |



| Q    | Sample response                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | The response:                                                                                                                                                                   |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 17a) | To UluruMagnetic heading = $229^{\circ} - 2^{\circ} = 227^{\circ}$ MTrue course = $233^{\circ}$ , Wind = $180/08 (176^{\circ}$ M),TAS = $145$ ktsGround speed = $140$ kts (with 5 kt headwind)From UluruMagnetic heading = $49^{\circ} + 3^{\circ} = 52^{\circ}$ MTrue course = $53^{\circ}$ , Wind = $180/08 (176^{\circ}$ M),TAS = $145$ ktsGround speed = $150$ kts (with 5 kt tailwind)ETE (using the flight calculator)Distance = $181$ nm, TAS = $140$ kts and TAS = $150$ kts78 minutes (outbound) + $30$ mins scenic flight + $73$ minutes (inbound) = $181$ minutes181 minutes / $60 = 3.016$ | <ul> <li>determines the ground speed to the destination [1 mark]</li> <li>determines the ground speed from the destination [1 mark]</li> <li>determines ETE [1 mark]</li> </ul> |
|      | 3 hours (0.016 x 60) = <b>3 hours 1 minute</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                 |

| Q    | Sample response                                                                                                                                                                                                                                                                           | The response:                                                                                                                                                           |
|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 17b) | A limitation of TCAS is that drones and helicopters<br>may not be equipped with transponders, therefore<br>they would be undetectable. Drones will not be<br>displayed by the TCAS as they are restricted to 400 ft<br>(120 m) and are deemed to be 'on ground'.                          | • explains a limitation of TCAS <b>[1 mark]</b>                                                                                                                         |
| 17c) | The risk of mid-air collision is extremely low, given the<br>Cessna (fixed-wing aircraft) will operate at 4500 ft and<br>helicopters are expected to maintain a flight altitude of<br>3500 ft with drones operating below 400 ft as<br>determined by the chart information and drone law. | <ul> <li>determines there is a low risk of mid-air collision during the scenic flight [1 mark]</li> <li>provides an example to support the decision [1 mark]</li> </ul> |

| Q  | Sample response                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | The response:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 18 | The dusty conditions caused the flight instruments to<br>malfunction. The pitot tube and drain hole appear to<br>be obstructed with a clear static system.<br>The ASI remained constant at 145 kts until the pilot<br>completed a controlled descent and climb manouevre.<br>During the climb, static pressure decreases, allowing<br>the diaphragm that is trapped in the pitot system to<br>expand. This causes the indicator to overread.<br>During the descent, static pressure increases,<br>allowing the diaphragm that is trapped in the pitot<br>system to compress. This causes the indicator to<br>underread. | <ul> <li>determines the cause of the problem [1 mark]</li> <li>analyses the problem and conveys that the <ul> <li>pitot tube is obstructed with clear static system</li> <li>[1 mark]</li> </ul> </li> <li>ASI instrument remains constant at 145 kts <ul> <li>[1 mark]</li> <li>static pressure would decrease against the diaphragm, causing it to expand during a climb and increasing the ASI reading [1 mark]</li> <li>static pressure would increase against the diaphragm, causing it to compress during a descent and decreasing the ASI reading [1 mark]</li> </ul> </li> </ul> |



| Q    | Sample                                                        | resp  | ons                 | e                             |                                   |       |                   |                  |                | The response:                                                                                                                                                             |
|------|---------------------------------------------------------------|-------|---------------------|-------------------------------|-----------------------------------|-------|-------------------|------------------|----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 20a) | Hobart<br>(HBA)<br>Triabunna<br>(TNA)<br>Buxton Point<br>(BP) | LSALT | ALT<br>A095<br>A095 | NA<br>TAS<br>150 kt<br>150 kt | M LOG<br>WIND<br>215/14<br>215/14 |       | G/S<br>164<br>162 | DIST<br>26<br>16 | ETI<br>10<br>6 | <ul> <li>determines:</li> <li>ALT [1 mark]</li> <li>heading (HDG) [1 mark]</li> <li>ground speed (GS) [1 mark]</li> <li>estimated time interval (ETI) [1 mark]</li> </ul> |
| 20b) | The pilo<br>at 9.5 nr                                         |       |                     |                               | 9500'                             | ' con | trolle            | d airs           | pace           | <ul> <li>provides where aircraft departs controlled airspace</li> <li>[1 mark]</li> </ul>                                                                                 |

| Q  | Sample response                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | The response:                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 21 | The ATCO is most likely experiencing the following<br>situational awareness factors:<br>• stress and workload<br>• physiological factors<br>• system design.<br>The controller's environment is extremely stressful<br>with a high workload, which can affect the ability to<br>process information.<br>Physiological factors such as illness and medication<br>can have a drastic effect on information processing,<br>and therefore the controller's situational awareness.<br>System design could also be a contributing factor. If<br>the information ergonomics are not presented in a<br>user-friendly way, the controllers situation awareness<br>will suffer.<br>The risk could have been mitigated if the controller:<br>• monitored their health, wellbeing and stress<br>ensured the system design was user-friendly with<br>good ergonomics. | <ul> <li>identifies three situational awareness factors [1 mark]</li> <li>explains <ul> <li>one situational awareness factor [1 mark]</li> <li>a second situational awareness factor [1 mark]</li> <li>a third situational awareness factor [1 mark]</li> </ul> </li> <li>provides one example of how the risk in the scenario could have been mitigated [1 mark]</li> <li>provides a second example of how the risk in the scenario could have been mitigated [1 mark]</li> </ul> |

| Q    | Sample response                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | The response:                                                                                                                                                                                |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 22a) | Medications and altitude hypoxia are two variables<br>that will increase a pilot's BAC level                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <ul> <li>determines one variable [1 mark]</li> <li>determines a second variable [1 mark]</li> </ul>                                                                                          |
| 22b) | The brain is a crucial organ and alcohol can impair<br>reaction time, reasoning, judgment and memory loss.<br>It can also decrease the ability of the brain to use<br>oxygen, which can be magnified by altitude.<br>Alcohol causes eye muscle imbalance, leading to<br>double vision and focus difficulties.<br>Finally, alcohol is absorbed into the fluid of the inner<br>ear and stays there after it has been eliminated from<br>the blood, brain and body tissues. It can lead to<br>dizziness, disorientation, vertigo and decreased<br>hearing perception. | <ul> <li>identifies three crucial organs and explains the impact of alcohol on <ul> <li>the brain [1 mark]</li> <li>the eyes [1 mark]</li> <li>the inner ear [1 mark]</li> </ul> </li> </ul> |

| Q  | Sample response                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | The response:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 23 | The scenario suggests that the pilot's loss of<br>situational awareness was likely caused by several<br>factors which lead to the runway excursion.<br>Situational awareness involves an accurate<br>understanding of what is going on around you, and<br>what is likely to happen next.<br>The pilot's situational awareness was comprised due<br>to the stress of carrying passengers with what was<br>possibly excess luggage, further compounded by the<br>increased workload in transporting four passengers.<br>Another possible factor is that the pilot was young and<br>inexperienced with unexpected weather changes.<br>Crew resource management is important as the pilot<br>didn't communicate information clearly and concisely<br>to passengers. The pilot also did not show any<br>leadership skills, as they failed to plan and prioritise<br>their workload. The environment also played a part as<br>the pilot did not use all resources available. | <ul> <li>draws a conclusion about the circumstances that led to the runway excursion [1 mark]</li> <li>provides a definition for situational awareness [1 mark]</li> <li>explains one contributing factor affecting situational awareness [1 mark]</li> <li>explains a second contributing factor affecting situational awareness [1 mark]</li> <li>explains a third contributing factor affecting situational awareness [1 mark]</li> <li>analyses CRM, using the reasoning that the pilot's CRM was not effective for <ul> <li>communication [1 mark]</li> <li>leadership [1 mark]</li> <li>environment [1 mark]</li> </ul> </li> </ul> |

### © Tate of Queensland (QCAA) 2022

Licence: https://creativecommons.org/licenses/by/4.0 | Copyright notice: www.qcaa.qld.edu.au/copyright — lists the full terms and conditions, which specify certain exceptions to the licence. | Attribution: © State of Queensland (QCAA) 2022