Supporting students in the Sciences
IA3: Research investigation
Effective processes and practices: Communicating your findings

Purpose

Effective implementation of a research investigation involves five processes organised around a research question, as shown below. This resource supports students in communicating their findings.

What is effective communication of findings?

In the research investigation, you work individually to produce a response in an appropriate scientific genre. In this response, you will show how you have researched, analysed and interpreted secondary evidence from credible sources to form a justified conclusion to a research question and related this to a claim.

Research investigation findings are effectively communicated through:

- drafting — using internal assessment and scientific writing skills
- samples — using resources to review and build understanding of the requirements of the task
- monitoring progress — using checkpoints and reflective questioning.
Key questions when communicating your findings

Drafting
- Does my evidence address my research question?
- Have I applied the inquiry skills I have learnt throughout my course?
- Am I using the scientific writing skills I have learnt throughout my course?

Using samples
- Do I understand the verbs and qualifiers of the ISMG?
- Have I reviewed samples to clarify my understanding of each criterion of the ISMG?

Monitoring progress
- Am I meeting checkpoints and timelines?
- Am I using checkpoints to actively monitor my progress?
- Am I using reflective questioning to actively monitor understanding?
Considerations when communicating your findings

Drafting

Am I applying internal assessment and scientific writing skills?

- Does my evidence address my research question?
 - Review your summaries of evidence collated from credible sources and explain how your findings can be used to address your research question and evaluate the claim.
 - Discuss why the evidence is interesting and how it allows you to evaluate the claim. This builds your understanding and gives you ownership of your investigation.
 - Check that you have discussed the key evidence to make the overall conclusions, and then identify the limitations of the evidence.
 - Identify what you struggled with or what you wish was in the evidence. This hints at limitations of the evidence and possible improvements.

- Have I applied the inquiry skills I have learnt throughout my course?
 - Apply the analysis techniques you learnt in practical work and activities in class.
 - Review the skills used to complete the data test (IA1) and the student experiment (IA2).

- Am I using the scientific writing skills I have learnt throughout my course?
 - Create a plan (e.g. subheadings, paragraph topics) to help you begin your draft report.
 - Do not expect to write a final draft at your first attempt.
 - Initially, draft your report using the plan and add images, evidence and ideas as dot points. Once you are happy with the structure of the response, then turn this into paragraphs.
 - Consider using tables to summarise improvements and suggestions.
 - Check that your draft is concise, specific and based on evidence.
 - Show what you have learnt through the evidence that you have found.
 - In each paragraph, introduce the topic, explain your ideas concisely, provide evidence and then make a link back to your research question.
 - Avoid long sentences.
 - Ask other students to give you feedback on your draft before submitting it to your teacher.
• Do I understand the descriptors in the ISMG?
 - Ensure that you understand the verbs and qualifiers of each descriptor.
 ▪ Highlight the words that are different at each performance level.
 ▪ Look up definitions for each word in the syllabus glossary.
 ▪ Compare the meanings of descriptors at different levels, e.g. reasonable vs insightful.
 - Link each section of your draft to a descriptor in the ISMG.
 ▪ Check that you are not missing anything in your draft.
 ▪ Ensure that you are not including anything that does not match a descriptor in the ISMG.

• Have I reviewed samples to clarify my understanding of each descriptor in the ISMG?
 - Use samples from the QCAA website and past students’ work (if possible) to help you understand what is required.
 ▪ Review samples to consider what should go in each section of your response. Discuss this with your classmates and teacher.
 ▪ Use annotated samples to see how each section connects to the ISMG.
 ▪ Dissect a high-level sample, noting all the features of the ISMG, to consolidate your understanding of what different terms in the ISMG mean.
 - Use small snips of an annotated response to highlight the specific attributes of each section.
 ▪ Ask questions like: What made this section match the 5–6 performance level? Have I demonstrated this in my own investigation?
 ▪ After reading an example of a justified conclusion, highlight the evidence that links to the research question and justifies the conclusion. Then do this with your own conclusion.
 - Use samples from other science subjects to understand how different types of evidence can be used.
• Am I meeting checkpoints and timelines?
 - Manage your time by using the ISMG. Identify where you should be up to at the end of each lesson.
 - Stick to checkpoints and time limits.
 - Submit your draft on time so that you have time to reflect on your teacher’s feedback.
 - If necessary, submit your draft in dot point form and then convert these into paragraphs for your final response.

• Am I using checkpoints to actively monitor my progress?
 - Use checkpoints to:
 ▪ identify which of your sources are most useful
 ▪ conference with your teacher to ensure that you are on track
 ▪ discuss the ISMG with your teacher so they can guide you to demonstrate the top performance levels
 ▪ check that your writing is succinct enough to complete your response in 2000 words.
 - Use the ISMG as the primary document to monitor your progress.

• Am I using reflective questioning to actively monitor my understanding?
 - Continually ask yourself the following questions.
 ▪ What is my research question?
 ▪ What have I learnt in my science course that I can apply to this question?
 ▪ How does the evidence support what I believe?
 ▪ Why do I trust this author?
 ▪ Why should the reader believe me?
 ▪ Have I answered the research question?
 ▪ How confident am I in my answer?
 ▪ What evidence do I have to support my conclusion?
 ▪ Why do I believe this evidence?