

School name

Given name/s

Family name \square

External assessment 2023

Physics

Paper 2

Time allowed

- Perusal time - 10 minutes
- Working time - 90 minutes

General instructions

- Answer all questions in this question and response book.
- Write using black or blue pen.
- QCAA-approved calculator permitted.
- QCAA formula and data book provided.
- Planning paper will not be marked.

Section 1 (44 marks)

- 8 short response questions

DO NOT WRITE ON THIS PAGE

THIS PAGE WILL NOT BE MARKED

Section 1

Instructions

- Marks will not be deducted for correct answers that use different units or a different number of significant figures/decimal places than those indicated in the response box.
- If you need more space for a response, use the additional pages at the back of this book.
- On the additional pages, write the question number you are responding to.
- Cancel any incorrect response by ruling a single diagonal line through your work.
- Write the page number of your alternative/additional response, i.e. See page ...
- If you do not do this, your original response will be marked.

DO NOT WRITE ON THIS PAGE

THIS PAGE WILL NOT BE MARKED

QUESTION 1 (3 marks)

Describe the effects of relativistic travel on an object.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Do not write outside this box.

QUESTION 2 (5 marks)

In a frictionless system, object A rests on an inclined plane and object B undergoes horizontal circular motion. The two objects are connected by a length of string as shown.

Not to scale

Determine the speed of object B needed for object A to remain stationary. Show your working.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Speed $=$ \qquad $\mathrm{m} \mathrm{s}^{-1}$ (to two significant figures)

Do not write outside this box.

QUESTION 3 (8 marks)

Three charges are in a straight line as shown.

Net force on $T=+2.8 \mathrm{~N}$
a) Calculate the electric field strength at T. Show your working.
[2 marks]
\qquad
\qquad
\qquad
\qquad
\qquad

Electric field strength $=$ \qquad $\mathrm{N} \mathrm{C}^{-1}$ (to two significant figures)
b) Determine the value of r. Show your working.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Do not write outside this box.

QUESTION 4 (3 marks)

Two objects on different planets experience different accelerations due to gravity.

Object	Mass $\mathbf{(k g})$	Acceleration due to gravity $\left(\mathbf{m ~ s}^{\mathbf{- 2}}\right)$
A	79	1.6
B	32	3.7

Determine which object has the greatest force acting on it. Show your working.

QUESTION 5 (4 marks)

Describe what happens when light is shone onto a metallic surface in the context of the photoelectric effect.
\qquad

Do not write outside this box.

QUESTION 6 (10 marks)

A ball is thrown with an initial velocity of $8.0 \mathrm{~m} \mathrm{~s}^{-1}$ into a bucket as shown.

Not to scale
a) Calculate the time taken for the ball to reach its maximum height. Show your working. [4 marks]
\qquad
\qquad
\qquad
\qquad
\qquad

Time $=$ \qquad s (to two significant figures)

[^0]b) Calculate the magnitude of the ball's final velocity when it enters the bucket. Show your working.
\qquad

Final velocity $=$ $\mathrm{m} \mathrm{s}^{-1}$ (to two significant figures)

Do not write outside this box.

QUESTION 7 (5 marks)

Discuss the nature of light by describing evidence from two key experiments.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

QUESTION 8 (6 marks)

A length of wire, AB , is placed across an incomplete loop sitting within a magnetic field as shown.
Wire AB then moves with a constant velocity of $40 \mathrm{~m} \mathrm{~s}^{-1}$, creating an induced EMF of $23 \mu \mathrm{~V}$.

Not to scale

[^1]a) Determine the magnitude of the magnetic field strength experienced by the loop. Show your working.
\qquad

Magnetic field strength = T (to two significant figures)
b) Draw a conclusion about the direction of the induced current within the loop. Justify your reasoning.

END OF PAPER

[^2]
ADDITIONAL PAGE FOR STUDENT RESPONSES

Write the question number you are responding to.
\qquad

Do not write outside this box.

ADDITIONAL PAGE FOR STUDENT RESPONSES

Write the question number you are responding to.
\qquad

Do not write outside this box.

[^0]: Do not write outside this box.

[^1]: Do not write outside this box.

[^2]: Do not write outside this box.

