External assessment 2022

Question and response book

Physics

Paper 2

Time allowed

- Perusal time - 10 minutes
- Working time - 90 minutes

General instructions

- Answer all questions in this question and response book.
- Write using black or blue pen.
- QCAA-approved calculator permitted.
- QCAA formula and data book provided.
- Planning paper will not be marked.

Section 1 (50 marks)

- 9 short response questions

LUI

School code

School name
\square
Given name/s
\square
Family name
\square

> Attach your barcode ID label here

Section 1

Instructions

- If you need more space for a response, use the additional pages at the back of this book.
- On the additional pages, write the question number you are responding to.
- Cancel any incorrect response by ruling a single diagonal line through your work.
- Write the page number of your alternative/additional response, i.e. See page ...
- If you do not do this, your original response will be marked.

Do not write on this page

This page will not be marked

Do not write outside this box.

Question 1 (2 marks)

Two spaceports are stationary relative to each other. Astronaut A moves from one spaceport to the other at relativistic speed and observes the lights on both spaceports turn off at the same time.

Astronaut B is at a stationary position equally distant relative to each spaceport and observes the lights turn off one after the other.

Explain why the astronauts view these events differently.
\qquad
\qquad
\qquad
\qquad
\qquad

Do not write outside this box.

Question 2 (2 marks)

Contrast the properties of up quarks and tau particles.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Do not write outside this box.

Question 3 (8 marks)

Negatively charged oil drops were placed in a uniform electric field generated by two parallel plates. By altering the applied voltage between the plates, the oil drops were suspended in the air between the plates.

Not to scale

The graph shows the electric field strength required (achieved by altering the applied voltage) to suspend negatively charged oil drops of varying weight.

a) Determine the average charge on the oil drops. Show your working. [4 marks]
\qquad
\qquad
\qquad
\qquad
\qquad
Do not write outside this box.

$$
\begin{aligned}
& \text { Average charge }= \\
& \text { (to two significant figures) }
\end{aligned}
$$

Do not write outside this box.

Another oil drop was suspended between the plates with an electric field strength of $2.0 \times 10^{19} \mathrm{~V} \mathrm{~m}^{-1}$.
b) Determine the work done to move this oil drop a distance of 5 mm towards the negatively charged plate. Show your working. [4 marks]
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Work done = J
(to two significant figures)

Do not write outside this box.

Question 4 (5 marks)

A stationary object on a frictionless inclined plane is connected to a 15 kg weight as shown.

Do not write outside this box.

Calculate the mass of the object on the inclined plane.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Mass = kg
(to two significant figures)

Do not write outside this box.

Question 5 (3 marks)

The Feynman diagram for a particle interaction is shown.

Time

Describe the particle interaction taking place.
\qquad
\qquad
\qquad
\qquad
\qquad

Do not write outside this box.

Do not write on this page

This page will not be marked

Continue to the next page

Question 6 (14 marks)

A light was shone onto a metallic surface and the subsequently released photoelectron passed through a magnetic field.

a) Identify the direction the photoelectron would have curved as it passed through the magnetic field. [1 mark]

The graph shows the maximum kinetic energy of the photoelectron as the frequency of the light was changed.

b) Determine the work function for the metal. Show your working. [4 marks]
\qquad
\qquad
\qquad
\qquad
\qquad

Do not write outside this box.

$$
\begin{aligned}
& \text { Work function }= \\
& \text { (to two significant figures) }
\end{aligned}
$$

Do not write outside this box.
c) If the strength of the magnetic field is $5 \mu \mathrm{~T}$, determine the maximum radius of the photoelectron's path through the magnetic field, when light of wavelength 450 nm was shone onto the metallic surface. Show your working. [9 marks]
\qquad
Do not write outside this box.
Radius = \qquad m
(to two significant figures)

Do not write outside this box.

Question 7 (3 marks)

Two asteroids experience a gravitational force of $3.3 \times 10^{3} \mathrm{~N}$ between them. Their masses are $2.7 \times 10^{17} \mathrm{~kg}$ and $6.1 \times 10^{15} \mathrm{~kg}$.

Calculate the distance between the two asteroids. Show your working.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Distance $=$ m
(to two significant figures)

Do not write outside this box.

Question 8 (4 marks)

The graph shows the gravitational force experienced by a rocket of mass 750 kg as it approaches an asteroid.

Determine the mass of the asteroid. Show your working.
\qquad
\qquad
\qquad
\qquad
\qquad

Do not write outside this box.

Mass =
(to two significant figures)

Do not write outside this box.

Question 9 (9 marks)

A person spins an object 4.3 m above the ground in a horizontal circular path of radius 0.8 m . They release the object horizontally, allowing it to travel to the ground.
a) Calculate the centripetal acceleration of the object before it is released, given it takes 5 s for the object to complete 12 revolutions. Show your working. [4 marks]
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Centripetal acceleration = $\mathrm{m} \mathrm{s}^{-2}$ (to two significant figures)

Do not write outside this box.
b) Calculate the total horizontal displacement for the object after it is released. Show your working. [5 marks]
\qquad

Total horizontal displacement $=$
(to two significant figures)
End of paper
Do not write outside this box.

Additional page for student responses

Write the question number you are responding to.
\qquad
\qquad
\qquad
\qquad
\qquad

Do not write outside this box.

Additional page for student responses

Write the question number you are responding to.
\qquad

Do not write outside this box.

Additional page for student responses

Write the question number you are responding to.
\qquad
\qquad
\qquad
\qquad

Do not write outside this box.

Additional page for student responses

Write the question number you are responding to.
\qquad

Do not write outside this box.

(C) State of Queensland (QCAA) 2022

Licence: https://creativecommons.org/licenses/by/4.0 | Copyright notice: www.qcaa.qld.edu.au/copyright — lists the full terms and conditions, which specify certain exceptions to the licence. Third-party materials referenced above are excluded from this licence. | Attribution: © State of Queensland (QCAA) 2022

