			-	
LUI		Sc	hool code	
School name				
Given name/s			Attach your	
Family name			barcode ID label here	
External assessm	lent	Во	ook of books used	
		Que	stion and response book	

Physics

Paper 2

Time allowed

- Perusal time 10 minutes
- Working time 90 minutes

General instructions

- Answer all questions in this question and response book.
- Write using black or blue pen.
- QCAA-approved calculator permitted.
- QCAA formula and data book provided.
- Planning paper will not be marked.

Section 1 (37 marks)

• 9 short response questions

THIS PAGE WILL NOT BE MARKED

Section 1

Instructions

- If you need more space for a response, use the additional pages at the back of this book.
 - On the additional pages, write the question number you are responding to.
 - Cancel any incorrect response by ruling a single diagonal line through your work.
 - Write the page number of your alternative/additional response, i.e. See page ...
 - If you do not do this, your original response will be marked.

DO NOT WRITE ON THIS PAGE

THIS PAGE WILL NOT BE MARKED

QUESTION 1 (1 mark)

Explain why an object with mass cannot travel at the speed of light in a vacuum.

QUESTION 2 (6 marks)

A physicist measured the electric field strength at different distances away from a point charge. The data is plotted in the graph.

a)) Identify the mathematical relationship between E and $\frac{1}{r^2}$	[3 m
b)) Use the mathematical relationship identified in 2a) to deduce the magnitude charge creating the electric field.	of the [3 m
	Charge = C (to 1 decimal p	blace)

QUESTION 3 (5 marks)

The diagram shows the atomic energy levels of the atoms in an unknown gas.

	Ionisation
	-1.3 eV
	–2.7 eV
	-4.1 eV
	-5.6 eV

Predict the shortest wavelength of visible light that could be emitted from this unknown gas. (**Note:** The range of visible wavelengths of light is between 400 nm and 700 nm.)

Wavelenoth =	nm	

QUESTION 4 (5 marks)

Describe how experiments on the photoelectric effect provide evidence of the quantised nature of photons.

QUESTION 5 (4 marks)

An electron is situated halfway between two nuclei that are separated from each other by a distance of 4.5×10^{-10} m. The first nucleus contains two protons. The second nucleus contains three protons.

Calculate the magnitude of the overall electromagnetic force experienced by the electron.

Force = ______ N (to 1 decimal place)

QUESTION 6 (4 marks)

The diagram shows a particle, Q, entering a uniform magnetic field of 0.090 T. The particle has a speed of 1.5×10^6 m s⁻¹. Once in the magnetic field, the particle moves in a circular path as shown.

It is suspected that Q is one of the particles listed in the table.

Particle number	Charge, q (C)	Mass, m (kg)
1	-1.60×10^{-19}	9.11×10^{-31}
2	$+1.60 \times 10^{-19}$	9.11×10^{-31}
3	$+1.60 \times 10^{-19}$	1.67×10^{-27}
4	$+1.60 \times 10^{-19}$	3.34×10^{-27}
5	-1.60×10^{-19}	3.34×10^{-27}

Determine which particle Q is most likely to be.

Particle Q =

QUESTION 7 (3 marks)

A photoelectric effect experiment is conducted by shining different frequencies of light on a sample of aluminium. The kinetic energy of the ejected photoelectrons was measured. The data is plotted in the graph.

QUESTION 8 (4 marks)

The diagram shows an object sliding down a frictionless inclined plane.

Not drawn to scale

The graph shows the velocity of the object measured at various times.

Determine the angle of incline, $\boldsymbol{\theta}_i,$ of the inclined plane. Show your working.

of 17

QUESTION 9 (5 marks)

Nine planets orbit the same star. The orbital radius and orbital period of each planet was measured. The graph shows the cube of the orbital radius of each planet, r^3 , compared to its orbital period squared, T^2 .

Mass = _

kg (to 1 decimal place)

END OF PAPER

ADDITIONAL PAGE FOR STUDENT RESPONSES				
while the question number you are responding to.				

ADDITIONAL PAGE FOR STUDENT RESPONSES

Write the question number you are responding to.

Do	not	write	outside	this	box.
----	-----	-------	---------	------	------

ADDITIONAL PAGE FOR STUDENT RESPONSES				
while the question number you are responding to.				

ADDITIONAL PAGE FOR STUDENT RESPONSES

Write the question number you are responding to.

Do	not	write	outside	this	box.
----	-----	-------	---------	------	------

© State of Queensland (QCAA) 2020 Licence: https://creativecommons.org/licenses/by/4.0 | Copyright notice: www.qcaa.qld.edu.au/copyright — lists the full terms and conditions, which specify certain exceptions to the licence. | Attribution: © State of Queensland (QCAA) 2020