

School name \square
Given name/s \square

External assessment

Physics

Paper 2

Time allowed

- Perusal time - 10 minutes
- Working time - 90 minutes

General instructions

- Answer all questions in this question and response book.
- Write using black or blue pen.
- QCAA-approved calculator permitted.
- QCAA formula and data book provided.
- Planning paper will not be marked.

Section 1 (37 marks)

- 9 short response questions

DO NOT WRITE ON THIS PAGE

THIS PAGE WILL NOT BE MARKED

Section 1

Instructions

- If you need more space for a response, use the additional pages at the back of this book.
- On the additional pages, write the question number you are responding to.
- Cancel any incorrect response by ruling a single diagonal line through your work.
- Write the page number of your alternative/additional response, i.e. See page ...
- If you do not do this, your original response will be marked.

DO NOT WRITE ON THIS PAGE

THIS PAGE WILL NOT BE MARKED

QUESTION 1 (1 mark)

Explain why an object with mass cannot travel at the speed of light in a vacuum.

QUESTION 2 (6 marks)

A physicist measured the electric field strength at different distances away from a point charge. The data is plotted in the graph.

[^0]a) Identify the mathematical relationship between E and $\frac{1}{r^{2}}$
\qquad
\qquad
\qquad
\qquad
\qquad
b) Use the mathematical relationship identified in 2a) to deduce the magnitude of the charge creating the electric field.
\qquad
\qquad
\qquad
\qquad
\qquad

Charge $=$ \qquad C (to 1 decimal place)

QUESTION 3 (5 marks)

The diagram shows the atomic energy levels of the atoms in an unknown gas.

Predict the shortest wavelength of visible light that could be emitted from this unknown gas.
(Note: The range of visible wavelengths of light is between 400 nm and 700 nm .)

\square
\qquad

Wavelength $=$ \qquad nm

Do not write outside this box.

QUESTION 4 (5 marks)

Describe how experiments on the photoelectric effect provide evidence of the quantised nature of photons.
\qquad

Do not write outside this box.

QUESTION 5 (4 marks)

An electron is situated halfway between two nuclei that are separated from each other by a distance of $4.5 \times 10^{-10} \mathrm{~m}$. The first nucleus contains two protons. The second nucleus contains three protons.
Calculate the magnitude of the overall electromagnetic force experienced by the electron.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Force $=$ N (to 1 decimal place)

QUESTION 6 (4 marks)

The diagram shows a particle, Q , entering a uniform magnetic field of 0.090 T . The particle has a speed of $1.5 \times 10^{6} \mathrm{~m} \mathrm{~s}^{-1}$. Once in the magnetic field, the particle moves in a circular path as shown.

It is suspected that Q is one of the particles listed in the table.

Particle number	Charge, $\boldsymbol{q}(\mathbf{C})$	Mass, $\boldsymbol{m}(\mathbf{k g})$
1	-1.60×10^{-19}	9.11×10^{-31}
2	$+1.60 \times 10^{-19}$	9.11×10^{-31}
3	$+1.60 \times 10^{-19}$	1.67×10^{-27}
4	$+1.60 \times 10^{-19}$	3.34×10^{-27}
5	-1.60×10^{-19}	3.34×10^{-27}

Determine which particle Q is most likely to be.

$$
\text { Particle } \mathrm{Q}=
$$

[^1]
QUESTION 7 (3 marks)

A photoelectric effect experiment is conducted by shining different frequencies of light on a sample of aluminium. The kinetic energy of the ejected photoelectrons was measured. The data is plotted in the graph.

Identify the mathematical relationship between kinetic energy, E_{k}, and incident frequency, f.

QUESTION 8 (4 marks)

The diagram shows an object sliding down a frictionless inclined plane.

The graph shows the velocity of the object measured at various times.

Determine the angle of incline, θ_{i}, of the inclined plane. Show your working.

[^2]-
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
$\theta_{i}=$

QUESTION 9 (5 marks)

Nine planets orbit the same star. The orbital radius and orbital period of each planet was measured. The graph shows the cube of the orbital radius of each planet, r^{3}, compared to its orbital period squared, T^{2}.

Determine the mass of the star. Show your working.

[^3]
Mass $=$

kg (to 1 decimal place)

END OF PAPER

ADDITIONAL PAGE FOR STUDENT RESPONSES

Write the question number you are responding to.

ADDITIONAL PAGE FOR STUDENT RESPONSES

Write the question number you are responding to.

[^4]
ADDITIONAL PAGE FOR STUDENT RESPONSES

Write the question number you are responding to.

ADDITIONAL PAGE FOR STUDENT RESPONSES

Write the question number you are responding to.

[^5]
[^0]: Do not write outside this box.

[^1]: Do not write outside this box.

[^2]: Do not write outside this box.

[^3]: Do not write outside this box.

[^4]: Do not write outside this box.

[^5]: Do not write outside this box.

