

$\square$


## External assessment



## Physics

## Paper 1

## Time allowed

- Perusal time - 10 minutes
- Working time - 90 minutes


## General instructions

- Answer all questions in this question and response book.
- QCAA-approved calculator permitted.
- QCAA formula and data book provided.
- Planning paper will not be marked.


## Section 1 (20 marks)

- 20 multiple choice questions


## Section 2 (24 marks)

- 8 short response questions


## DO NOT WRITE ON THIS PAGE

THIS PAGE WILL NOT BE MARKED

## Section 1

## Instructions

- Choose the best answer for Questions 1-20.
- This section has 20 questions and is worth 20 marks.
- Use a 2B pencil to fill in the A, B, C or D answer bubble completely.
- If you change your mind or make a mistake, use an eraser to remove your response and fill in the new answer bubble completely.

|  | A | B | C | D |
| :---: | :---: | :---: | :---: | :---: |
| Example: | - | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ |



## Section 2

## Instructions

- Write using black or blue pen.
- If you need more space for a response, use the additional pages at the back of this book.
- On the additional pages, write the question number you are responding to.
- Cancel any incorrect response by ruling a single diagonal line through your work.
- Write the page number of your alternative/additional response, i.e. See page ...
- If you do not do this, your original response will be marked.
- This section has eight questions and is worth 24 marks.


## QUESTION 21 (3 marks)

An object that is $7.12 \times 10^{6} \mathrm{~m}$ from the centre of the Earth experiences a gravitational force of 2.84 kN . Calculate the mass of the object.
$\qquad$
$\qquad$
$\qquad$

Mass =
kg (to the nearest whole number)

## QUESTION 22 (1 mark)

List the six types of leptons.
1.
2.
3.
6.

Do not write outside this box.

## QUESTION 23 (2 marks)

Twin astronauts conduct an experiment where one travels with a velocity close to the speed of light to a distant planet, while the other stays on Earth. Each twin expects the other to be a different age by the time the first twin reaches and remains on the distant planet.

Use the theory of special relativity to explain why the twins will no longer be the same age, and draw a conclusion about which twin will be younger.
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

## QUESTION 24 (4 marks)

A spaceship travelled from Planet A to Planet B at a speed of $0.90 c$. An observer that was stationary relative to both planets measured the time taken for the trip to be 4.0 years.
Calculate the time taken for the trip as measured by an observer on the spaceship.

$$
\text { Time }=
$$ years (to 1 decimal place)

[^0]
## QUESTION 25 (3 marks)

Mars has an average orbital radius of approximately 1.5 times the average orbital radius of Earth. Calculate the time it takes Mars to orbit the Sun.

Time $=$ days (to the nearest whole number)

[^1]
## QUESTION 26 (3 marks)

A photoelectric effect experiment was conducted by shining different frequencies of light on a plate made of an unknown metal. The graph shows the kinetic energies of ejected photoelectrons with respect to the frequency of incident light.


The table shows the work functions of various metals.

| Metal | Work function (eV) |
| :--- | :--- |
| potassium | 2.30 |
| copper | 4.70 |
| osmium | 5.93 |

Determine which metal is most likely to have ejected the photoelectrons in this experiment.

## Metal $=$

Do not write outside this box.

## QUESTION 27 (4 marks)

The diagram shows a small section of the emission spectrum for a mixture of gases.


The diagram shows the atomic energy level diagram for a gas known as Element A.

$\qquad$


Determine whether it is possible that Element A is one of the gases in the mixture.

[^2]
$\qquad$

Do not write outside this box.

## QUESTION 28 (4 marks)

The diagram shows a charged particle moving between two current-carrying wires.


Calculate the magnitude of the magnetic force acting on the charged particle.
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

Magnetic force $=$ N (to 2 decimal places)

## END OF PAPER

[^3]
## ADDITIONAL PAGE FOR STUDENT RESPONSES

Write the question number you are responding to.

[^4]
## ADDITIONAL PAGE FOR STUDENT RESPONSES

Write the question number you are responding to.

## ADDITIONAL PAGE FOR STUDENT RESPONSES

Write the question number you are responding to.

[^5]
## ADDITIONAL PAGE FOR STUDENT RESPONSES

Write the question number you are responding to.

## ADDITIONAL PAGE FOR STUDENT RESPONSES

Write the question number you are responding to.

[^6] terms and conditions, which specify certain exceptions to the licence. |


[^0]:    Do not write outside this box.

[^1]:    Do not write outside this box.

[^2]:    Do not write outside this box.

[^3]:    Do not write outside this box.

[^4]:    Do not write outside this box.

[^5]:    Do not write outside this box.

[^6]:    Do not write outside this box.

