Physics 2019 v1.3

IA2 high-level annotated sample response

November 2022

Student experiment (20\%)

This sample of student work has been published by the QCAA to assist and support teachers to match evidence in student responses to the characteristics described in the instrument-specific marking guide (ISMG).
The following sample is an unedited authentic student response produced with permission. Any identifying features have been redacted from the response. It may contain errors and/or omissions that do not affect its overall match to the characteristics indicated.

Assessment objectives

2. apply understanding of gravity and motion, or electromagnetism to modify experimental methodologies and process primary data
3. analyse experimental evidence about gravity and motion, or electromagnetism
4. interpret experimental evidence about gravity and motion, or electromagnetism
5. investigate phenomena associated with gravity and motion, or electromagnetism, through an experiment
6. evaluate experimental processes and conclusions about gravity and motion, or electromagnetism
7. communicate understandings and experimental findings, arguments and conclusions about gravity and motion, or electromagnetism
Note: Objective 1 is not assessed in this instrument.

Instrument-specific marking guide (ISMG)

Criterion: Research and planning

Assessment objectives

2. apply understanding of gravity and motion, or electromagnetism to modify experimental methodologies and process primary data
3. investigate phenomena associated with gravity and motion, or electromagnetism, through an experiment

The student work has the following characteristics:	Marks
- informed application of understanding of gravity and motion, or electromagnetism to modify experimental methodologies demonstrated by - a considered rationale for the experiment - justified modifications to the methodology - effective and efficient investigation of phenomena associated with gravity and motion, or electromagnetism demonstrated by - a specific and relevant research question - a methodology that enables the collection of sufficient, relevant data - considered management of risks and ethical or environmental issues	$5-6$
- adequate application of understanding of gravity and motion, or electromagnetism to modify experimental methodologies demonstrated by - a reasonable rationale for the experiment - feasible modifications to the methodology - effective investigation of phenomena associated with gravity and motion, or electromagnetism demonstrated by - a relevant research question - a methodology that enables the collection of relevant data - management of risks and ethical or environmental issues	$3-4$
- rudimentary application of understanding of gravity and motion, or electromagnetism to modify experimental methodologies demonstrated by - a vague or irrelevant rationale for the experiment - inappropriate modifications to the methodology - ineffective investigation of phenomena associated with gravity and motion, or electromagnetism demonstrated by - an inappropriate research question - a methodology that causes the collection of insufficient and relevant data - inadequate management of risks and ethical or environmental issues	- does not satisfy any of the descriptors above.
- does	$1-2$

Criterion: Analysis of evidence

Assessment objectives

2. apply understanding of gravity and motion, or electromagnetism to modify experimental methodologies and process primary data
3. analyse experimental evidence about gravity and motion, or electromagnetism
4. investigate phenomena associated with gravity and motion, or electromagnetism through an experiment

The student work has the following characteristics:

- appropriate application of algorithms, visual and graphical representations of data about gravity and motion, or electromagnetism demonstrated by correct and relevant processing of data
- systematic and effective analysis of experimental evidence about gravity and motion, or electromagnetism demonstrated by
- thorough identification of relevant trends patterns or relationships
- thorough and appropriate identification of the uncertainty and limitations of evidence
- effective and efficient investigation of phenomenon associated with gravity and motion, or electromagnetism demonstrated by the collection of sufficient and relevant raw data
- adequate application of algorithms, visual and graphical representations of data about gravity and motion, or electromagnetism demonstrated by basic processing of data
- effective analysis of experimental evidence about gravity and motion, or electromagnetism demonstrated by
- identification of obvious trends, patterns or relationships
- basic identification of the uncertainty and limitations of evidence
- effective investigation of phenomenon associated with gravity and motion, or electromagnetism demonstrated by the collection of relevant raw data
- rudimentary application of algorithms, visual and graphical representations of data about gravity and motion, or electromagnetism demonstrated by incorrect or irrelevant processing of data
- ineffective analysis of experimental evidence about gravity and motion, or electromagnetism demonstrated by
- identification of incorrect or irrelevant trends, patterns or relationships
- incorrect or insufficient identification of the uncertainty and limitations of evidence
- ineffective investigation of phenomenon associated with gravity and motion, or electromagnetism demonstrated by the collection of insufficient and irrelevant raw data
- does not satisfy any of the descriptors above.

Criterion: Interpretation and evaluation

Assessment objectives

4. interpret experimental evidence about gravity and motion, or electromagnetism
5. evaluate experimental processes and conclusions about gravity and motion, or electromagnetism

The student work has the following characteristics:	Marks
- insightful interpretation of experimental evidence about gravity and motion, or electromagnetism demonstrated by justified conclusion/s linked to the research question - critical evaluation of experimental processes about gravity and motion, or electromagnetism demonstrated by - justified discussion of the reliability and validity of the experimental process - suggested improvements and extensions to the experiment that are logically derived from the analysis of evidence	5-6
- adequate interpretation of experimental evidence about gravity and motion, or electromagnetism demonstrated by reasonable conclusion/s linked to the research question - basic evaluation of experimental processes about gravity and motion, or electromagnetism demonstrated by - reasonable description of the reliability and validity of the experimental process - suggested improvements and extensions to the experiment that are related to the analysis of evidence	3-4
- invalid interpretation of experimental evidence about gravity and motion, or electromagnetism demonstrated by inappropriate or irrelevant conclusion/s - superficial evaluation of experimental processes about gravity and motion, or electromagnetism demonstrated by - cursory or simplistic statements about the reliability and validity of the experimental process - ineffective or irrelevant suggestions	1-2
- does not satisfy any of the descriptors above.	0

Criterion: Communication

Assessment objectives

7. communicate understandings and experimental findings, arguments and conclusions about gravity and motion, or electromagnetism

The student work has the following characteristics:	Marks
- effective communication of understandings and experimental findings, arguments and conclusions about gravity and motion, or electromagnetism demonstrated by - fluent and concise use of scientific language and representations - appropriate use of genre conventions - acknowledgment of sources of information through appropriate use of referencing conventions	$\underline{2}$
- effective communication of understandings and experimental findings, arguments and conclusions about gravity and motion, or electromagnetism demonstrated by - competent use of scientific language and representations - use of basic genre conventions - use of basic referencing conventions	1
- does not satisfy any of the descriptors above.	0

Context

See IA2 sample assessment instrument: Student experiment (20\%) (available on the QCAA Portal).

You have completed the following practicals in class:

- Conduct an experiment to determine the horizontal distance travelled by an object projected at various angles from the horizontal (mandatory practical).
- Conduct an experiment to investigate the force acting on a conductor in a magnetic field (mandatory practical).
- Conduct an experiment to investigate the strength of a magnet at various distances (mandatory practical).

Task

Modify (i.e. refine, extend or redirect) an experiment in order to address your own related hypothesis or question.

You may use a practical performed in class, a related simulation or another practical related to Unit 3 (as negotiated with your teacher) as the basis for your methodology and research question.

Sample response

Criterion	Marks allocated	Provisional marks
Research and planning Assessment objectives 2, 5	6	6
Analysis of evidence Assessment objectives 2, 3, 5	6	6
Interpretation and evaluation Assessment objectives 4, 6	6	6
Communication Assessment objective 7	2	2
Total	$\mathbf{2 0}$	$\mathbf{2 0}$

The annotations show the match to the instrument-specific marking guide (ISMG) performancelevel descriptors.

Research and planning [5-6]
a specific and relevant research question

The research question is clearly defined to allow the collection of sufficient and relevant data. The research question is connected to the rationale and the topics covered in the unit.

Research and planning [5-6]
justified modifications to the methodology

The response gives sound reasons for how the modifications to the methodology will refine, extend or redirect the original experiment, and includes strategies for achieving these modifications.

Research and planning [5-6]
a considered rationale for the experiment

The rationale explicitly communicates the reasons for the modifications to the methodology.

Projectile Motion of a Spherical Object Student Experiment

Research Question

What is the relationship between the angle of projection of a spherical projectile and its time of flight, when the mass of the projectile, its initial velocity, and its vertical displacement are constant?

Rationale

The purpose of the original student experiment was to investigate the relationship between the projection angle of a spherical projectile and its range. The following theoretical relationship was expected ("Projectiles Launched at Angle Review", n.d.)

$$
R=\frac{u^{2} \sin 2 \theta}{g}
$$

The angle of projection was the independent variable, carbon paper with plain paper underneath was laid on desks so the range was measured between the mark left by the projectile and the launcher. The spring loader of the launcher had a constant tension, so the initial velocity was constant ("Projectiles Launched at Angle Review", n.d.) However, this experiment allowed moderate random error as the paper shifted easily, so range measurements were randomly inaccurate.

Consequently, the experiment was redirected and refined. Whilst the angle was kept as the independent variable, the dependent variable became time. This allowed the relationship between projection angle and time to be investigated, and error as a result of the carbon paper method was eliminated. The experiment was refined by recording the projectiles' trajectories on a phone, converting the videos to 240 frames per second (fps), using a phone to time the trajectories shown by the videos, and then dividing this measurement by eight to determine what the time would be in real life (as this is 30 fps). As initial velocity was a variable in the expected relationship, a photogate was used to measure this. The use of a photogate allowed the measurements to be precise and accurate, thereby increasing the usefulness of the results in comparison to the original experiment. A single ball bearing was used so mass was constant, and the ball landed on a desk the height of the launcher, so vertical displacement was 0 m (allowing a far simpler expected relationship to be used). The angle was measured from 10° to 80° so the ball was projected at an angle and safely.

It was expected that the initial speed would be approximately constant (this is specified in the research question) as the spring loader of the launcher was kept at a constant tension, meaning that the magnitude of the projection force was constant. The projection angle had an effect only on the direction of the initial velocity, not its magnitude.

Research and planning [5-6]
a considered rationale for the experiment

The rationale explicitly communicates the reasons for modifying the original experiment.

Laws of linear motion were used to express the relationship between projection angle and time of flight, because they considered the necessary elements, however this did not consider horizontal acceleration (deceleration due to air resistance). It was assumed that this was negligible because the distance travelled by the projectile was too small and the projectile only had small radius, so the measuring instruments would not register to air resistance to a significant extent because they were not that precise ("Air and fluid resistance" | Khan Academy, n.d.) Additionally, experiments were conducted in a small classroom rather than outside so wind was minimal. To determine the expected relationship:

$$
s_{y}=\frac{1}{2} g t^{2}+u_{y} t
$$

If $s_{y}=0 m$ and $u_{y}=u \sin \theta:$

$$
0=\frac{1}{2} g t^{2}+u \sin \theta t
$$

Factorise out t and use the null factor theorem:

$$
\begin{gathered}
0=\frac{1}{2} g t+u \sin \theta \mathrm{OR} t=0 \\
t=\frac{2 u \sin \theta}{g}
\end{gathered}
$$

So $s_{y}=0 m$ at $t=0$ and $t=\frac{2 u \sin \theta}{g}$. Hence time of flight is:

$$
t=\frac{2 u \sin \theta}{g}
$$

It was expected that the relationship between projection angle and time of flight could be expressed by this equation ("Projectiles Launched at Angle Review", n.d). Therefore:

$$
t \propto \sin \theta
$$

The constant of proportionality is $\frac{2 u}{g}$.
The initial experiment supported the expected relationship, so maximum range was at 45°. The expected relationship for the modified experiment predicts that time increases as angle increases, meaning that despite the maximum range at 45° the maximum distance travelled (and hence maximum height) is at 90°. As angle increases, more of the initial velocity is in the vertical component and less in the horizontal component, so its height and time of flight increases ("Projectiles Launched at Angle Review", n.d). This can be seen from the expected relationship as $u \sin \theta=u_{y}$ so $t=\frac{2 u_{y}}{g}$.

Subsequently, the purpose of the student experiment was to investigate the relationship between the projection angle of a spherical projectile and its time of flight, when the mass of the projectile, its initial velocity, and its vertical displacement are constant.

Management of Risks

The primary risk was being hit by a projectile, either while in the air or after bouncing off the table it landed on. To manage this, students wore safety glasses and stood behind the launcher. Additionally 90° was not a projection angle used as the projectile would land directly at the launcher, endangering the person who launched it.

	error is shown by Graph_2, suggesting that the time or initial _elocity was
	measured incorrectly consistently due to issues with the smartphones used,
	the photogate, or an_unknown source. Hence, the _mprovements and
extensions_outlined previously are recommended.	

© State of Queensland (QCAA) 2022
Licence: https://creativecommons.org/licenses/by/4.0 | Copyright notice: www.qcaa.qld.edu.au/copyright lists the full terms and conditions, which specify certain exceptions to the licence.|
Attribution (include the link): © State of Queensland (QCAA) 2022 www.qcaa.qld.edu.au/copyright.

