LUI	School code
School name	
Given name/s	Attach your
Family name	barcode ID label here
External assessment 2022	Book of books used
	Question and response book

Marine Science

Paper 1

Time allowed

- Perusal time 10 minutes
- Working time 90 minutes

General instructions

- · Answer all questions in this question and response book.
- QCAA-approved calculator permitted.
- Planning paper will not be marked.

Section 1 (20 marks)

• 20 multiple choice questions

Section 2 (28 marks)

• 8 short response questions

DO NOT WRITE ON THIS PAGE

THIS PAGE WILL NOT BE MARKED

Section 1

Instructions

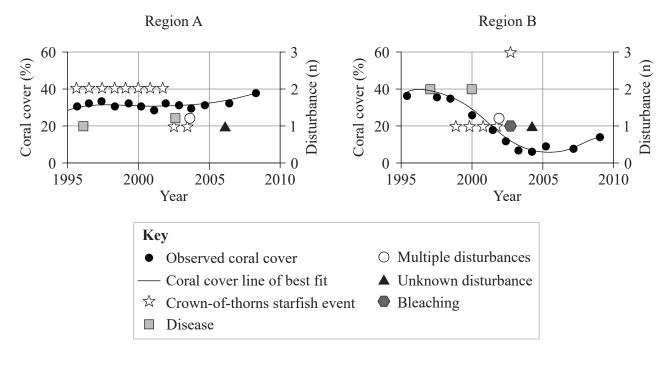
- Choose the best answer for Questions 1–20.
- This section has 20 questions and is worth 20 marks.
- Use a 2B pencil to fill in the A, B, C or D answer bubble completely.
- If you change your mind or make a mistake, use an eraser to remove your response and fill in the new answer bubble completely.

	А	В	С	D
Example:		\bigcirc	\bigcirc	\bigcirc

	А	В	С	D
1.	\bigcirc	\bigcirc	\bigcirc	\bigcirc
1. 2.	\bigcirc	\bigcirc	\bigcirc	\bigcirc
3. 4. 5.	\bigcirc	\bigcirc	\bigcirc	\bigcirc
4.	\bigcirc	\bigcirc	\bigcirc	\bigcirc
5.	\bigcirc	\bigcirc	\bigcirc	\bigcirc
6.	\bigcirc	\bigcirc	\bigcirc	\bigcirc
7.	\bigcirc	\bigcirc	\bigcirc	\bigcirc
7. 8. 9.	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	\bigcirc	\bigcirc	\bigcirc	\bigcirc
10.	\bigcirc	\bigcirc	\bigcirc	\bigcirc
11.	\bigcirc	\bigcirc	\bigcirc	\bigcirc
12.	\bigcirc	\bigcirc	\bigcirc	\bigcirc
13.	\bigcirc	\bigcirc	\bigcirc	\bigcirc
14.	\bigcirc	\bigcirc	\bigcirc	\bigcirc
15.	\bigcirc	\bigcirc	\bigcirc	\bigcirc
16.	0000000000000000000000	00000 00000 00000 00000	000000000000000000000000000000000000000	00000 00000 00000 00000
17.	\bigcirc	\bigcirc	\bigcirc	\bigcirc
18.	\bigcirc	\bigcirc	\bigcirc	\bigcirc
19.	\bigcirc	\bigcirc	\bigcirc	\bigcirc
20.	\bigcirc	\bigcirc	\bigcirc	\bigcirc

Section 2

Instructions


- Write using black or blue pen.
- If you need more space for a response, use the additional pages at the back of this book.
 - On the additional pages, write the question number you are responding to.
 - Cancel any incorrect response by ruling a single diagonal line through your work.
 - Write the page number of your alternative/additional response, i.e. See page ...
 - If you do not do this, your original response will be marked.
- This section has eight questions and is worth 28 marks.

QUESTION 21 (3 marks)

Compare the catch rates of maximum sustainable yields and maximum economic yields.

QUESTION 22 (3 marks)

The graphs show temporal trends in percentage cover of hard coral in two regions, A and B.

Compare the resilience of the reefs in regions A and B.

QUESTION 23 (3 marks)

The structure of a coral species is shown.

Identification key for classifying coral

1. Symmetry:
six-foldgo to 2
eight-foldgo to 3
2. Growth form:
solitary polypOrder Actiniaria

3. Attachment to substrate:

base attaches to hard substrate (sessile)Order Alcyonacea bulbous pendacule attached into sand (non-sessile) Order Pennatulacea

tube dwellingOrder Ceriantharia

Classify this coral using the identification key. Show your reasoning.

QUESTION 24 (5 marks)

The boundary of the Triassic and Jurassic periods was marked by intense volcanic activity, an atmospheric carbon dioxide concentration of approximately 2000 ppm, and a mass extinction in which more than 20% of marine genera disappeared. Species with aragonitic shells were particularly affected.

Explain how volcanic activity was responsible for the mass extinction.

QUESTION 25 (6 marks)

Students conducted fish surveys at two sites on Heron Island.

Site A (14% coral cover)			Site
Fish species	Count (n)		Fis
Butterfly	6		But
Grouper	0		Gro
Moray eel	1		Mo
Parrot	29		Par
Snapper	2		Sna
Sweetlip	1		Swe
Total	39		Tot
SDI			SD

Site B (65% coral cover)				
Fish species	Count (n)			
Butterfly	25			
Grouper	6			
Moray eel	0			
Parrot	7			
Snapper	11			
Sweetlip	0			
Total	49			
SDI	0.67			

a) Use Simpson's diversity index (SDI) to calculate the biodiversity of site A. Show your working.

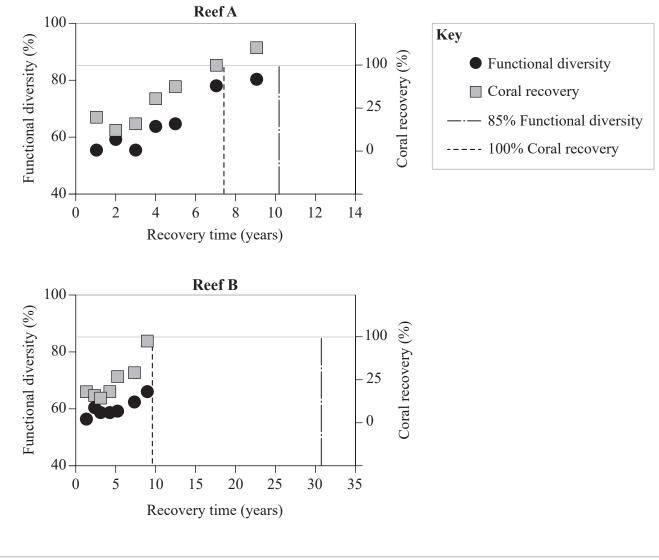
[3 marks]

$$SDI = 1 - \left(\frac{\Sigma n(n-1)}{N(N-1)}\right)$$

1.5	D 11 1 1 1					~1 .
b)	Predict which	site is like	v to have	higher coral	diversity S	Show your reasoning.
<i>v</i> ,	I I COICE WINDI	bite is inter	<i>j</i> to mave		ar verbreg.	Show your reasoning.

[3 marks]

QUESTION 26 (3 marks)


Identify three differences between intensive and extensive aquaculture systems.

QUESTION 27 (2 marks)

Describe an aspect of fisheries management that applies the precautionary principle.

QUESTION 28 (3 marks)

The graphs show functional diversity and coral recovery over time for two reefs after each reef has experienced a severe disturbance event.

Compare the resilience of the two reefs.	
compare the residence of the two feels.	
	END OF PAPER
	<section-header></section-header>
	<section-header></section-header>
	END OF PAPER
	END OF PAPER
	END OF PAPER

ADDITIONAL PAGE	FOR	STUDENT	RESPONSES
		N I O D III (I	

ADDITIONAL PAGE FOR STUDENT RESPONSES

Do not write outside this box.	
--------------------------------	--

	ADDITIONAL PAG	E FOR	STUDENT	RESPONSES
--	----------------	-------	----------------	-----------

ADDITIONAL PAGE FOR STUDENT RESPONSES

References

Question 22

Graphs derived and/or adapted from

The PLOS ONE Staff 2014, 'Disturbance and the Dynamics of Coral Cover on the Great Barrier Reef (1995–2009)', *PLOS ONE*, vol. 9, no. 6, e99742, https://doi.org/10.1371/journal.pone.0099742. Used under the Creative Commons Attribution License

Question 23

Diagram derived from

- Conti-Jerpe, IE & Freshwater, DW 2017, 'Hedera caerulescens (Alcyonacea: Alcyoniidae), a new genus and species of soft coral from the temperate North Atlantic: Invasive in its known range?', *Invertebrate Systematics*, vol. 31, no. 6, pp. 723–733, https://doi.org/10.1071/IS16069.
- Vitor 2016, *Ko Lanta*, https://commons.wikimedia.org/wiki/File:Pink_soft_coral_(5474803362).jpg. Licensed CC BY-SA 2.0

Question 28

Graphs adapted from

Figure 3 in Jones, KA, Osborne, KO & Logan, M 2014, 'Contrasting rates of coral recovery and reassembly in coral communities on the Great Barrier Reef', *Coral Reefs*, vol. 33, pp. 553–563, https://doi.org/10.1007/s00338-014-1148-z. Used under a Creative Commons Attribution Licence.

© State of Queensland (QCAA) 2022

Licence: https://creativecommons.org/licenses/by/4.0 | Copyright notice: www.qcaa.qld.edu.au/copyright — lists the full terms and conditions, which specify certain exceptions to the licence. Third-party materials referenced above are excluded from this licence. | Attribution: © State of Queensland (QCAA) 2022