LUI								School code			
Schoo	ol nam	ie									
Given	name	e/s							Attach yo		
Famil	y nam	ne						barco	ode ID lab	el here	
Exte	rnal	asse	ssme	ent 20)22			Book	of	book	s used
								Question an	d respo	onse b	ook

Chemistry

Paper 1

Time allowed

- Perusal time 10 minutes
- Working time 90 minutes

General instructions

- Answer all questions in this question and response book.
- QCAA-approved calculator permitted.
- QCAA formula and data book provided.
- Planning paper will not be marked.

Section 1 (20 marks)

• 20 multiple choice questions

Section 2 (31 marks)

• 7 short response questions

DO NOT WRITE ON THIS PAGE THIS PAGE WILL NOT BE MARKED

Section 1

Instructions

- Choose the best answer for Questions 1–20.
- This section has 20 questions and is worth 20 marks.
- Use a 2B pencil to fill in the A, B, C or D answer bubble completely.
- If you change your mind or make a mistake, use an eraser to remove your response and fill in the new answer bubble completely.

	A	В	C	D
Example:			0	

	A	В	С	D
1.	0	0	0	0
2.	0	\bigcirc		\bigcirc
3. 4. 5.	0	\bigcirc		\bigcirc
4.	0	\bigcirc		\bigcirc
5.	0			\bigcirc
6.	0		0	0
7.		\bigcirc		\bigcirc
8. 9.	0	\bigcirc		\bigcirc
9.	0	\bigcirc		\bigcirc
10.	0	\circ		\circ
11.	0	\bigcirc		\bigcirc
12.	0	\bigcirc		\bigcirc
13.	0	\bigcirc		\bigcirc
14.	0	\bigcirc		\bigcirc
15.	0	\circ	0	\circ
16.	00000 00000 00000 00000	00000 00000 00000 00000	C 000000000000000000000000000000000000	D 00000 00000 00000 00000
17.	0	\bigcirc		\bigcirc
18.		\bigcirc		\bigcirc
19.	0	\bigcirc		\bigcirc
20.	0	\bigcirc		\bigcirc

Section 2

Instructions

- Write using black or blue pen.
 - If you need more space for a response, use the additional pages at the back of this book.
 - On the additional pages, write the question number you are responding to.
 - Cancel any incorrect response by ruling a single diagonal line through your work.
 - Write the page number of your alternative/additional response, i.e. See page ...
 - If you do not do this, your original response will be marked.
- This section has seven questions and is worth 31 marks.

DO NOT WRITE ON THIS PAGE

THIS PAGE WILL NOT BE MARKED

a)	Identify whether 2-bromopropane is a saturated or unsaturated compound. Explain your reasoning.	[2 mark.
b)	Determine whether 2-bromopropane is a primary, secondary or tertiary halogenoalkane. Explain your reasoning.	[2 mark.
	ESTION 22 (2 marks) Elate the concentration of HF (hydrogen fluoride) in an aqueous solution with a pH of 4.00 7.2×10^{-4}). Show your working.	

QUESTION 23 (4 marks)

Ibuprofen is manufactured using two different processes.

Process	Number	Reagents		Ibuprofe	en	Waste produc	ets
	of reagents used	Atoms	M _r	Atoms	M _r	Atoms	M _r
1	7	C ₂₀ H ₄₂ NO ₁₀ ClNa	514.5	$C_{13}H_{18}O_2$	206.0	C ₇ H ₂₄ NO ₈ ClNa	308.5
2	4	C ₁₅ H ₂₂ O ₄	266.0	C ₁₃ H ₁₈ O ₂	206.0	C ₂ H ₄ O ₂	60.0

Calculate the atom economy for each process and draw conclusions about the economic and environmental impact of each process.					

QUESTION 24	(7 marks)
--------------------	-----------

This electrochemical cell was constructed using copper and platinum electrodes.

$$Cu(s)\mid Cu^{2+}(aq)\ (1M)\parallel Fe^{3+}(aq)\ (1M), Fe^{2+}(aq)\ (1M)\mid Pt(s)$$

a) Compare the standard electrode potential (E°) of the two half-cells.

[3 marks]

Similarity:

Difference:

Significance:

b) Write a balanced redox equation for the electrochemical cell.

[1 mark]

c) Determine the cell potential (in volts) for the electrochemical cell.

[1 mark]

Cell potential = _____ V (to two significant figures)

d) Determine the oxidising agent. Explain your reasoning.

[2 marks]

QUESTION 25 (5 marks)

Three unknown gases are combined in a sealed flask and allowed to reach equilibrium as shown by the equation.

$$3A_2(g) + X_2(g) \rightleftharpoons 2XA_3(g)$$

a)	Determine whether the gases reach a state of dynamic equilibrium. Explain your reasoning.	[3 marks]
b)	Determine if the relative position of equilibrium lies towards the products or reactants, if the molar concentrations at equilibrium are 3.4 mol L^{-1} for A_2 , 1.8 mol L^{-1} for X_2 and 4.2 mol L^{-1} for XA_3 . Explain your reasoning.	
	and 4.2 mol L ⁻¹ for XA ₃ . Explain your reasoning.	[2 marks]

QUESTION 26 (4 marks)

Three unknown 0.1 M solutions, A, B and C, are found to have the following properties.

Solution	[H ⁺] (mol L ⁻¹)	pН	рОН
A	0.0001		10.0
В		2.0	
С	0.063		

a) Determine the pH of solution A.

[1 mark]

pH = _____ (to one decimal place)

b) Determine the concentration of hydrogen ions [H⁺] in solution B.

[1 mark]

 $[H^+]$ in solution $B = \underline{\qquad}$ mol L^{-1} (to two significant figures)

c) Calculate the pOH of solution C. Show your working.

[2 marks]

pOH = _____ (to one decimal place)

QUESTION 27 (5 marks)

Five colourless 0.1 M solutions of NH_3 , HCl, KOH, H_2SO_4 and CH_3CH_2COOH have lost their labels. The substances are randomly relabelled A, B, C, D and E. The conductivity of each solution and the colour of the solution when phenol red was added are shown.

Solution	Conductivity (S/m)	Colour with phenol red
A	4.1	yellow
В	0.14	red
С	0.08	yellow
D	6.7	yellow
Е	4.9	red

Identify the five solutions. Explain your reasoning.			
END OF DADED			
END OF PAPER			

© State of Queensland (QCAA) 2022 Licence: https://creativecommons.org/licenses/by/4.0 | Copyright notice: www.qcaa.qld.edu.au/copyright — lists the full terms and conditions, which specify certain exceptions to the licence. | Attribution: © State of Queensland (QCAA) 2022