External assessment 2022

Multiple choice question book

Chemistry

Paper 1

General instruction

• Work in this book will not be marked.

Section 1

QUESTION 1

Identify the type of reaction that occurs when ethene undergoes polymerisation to form polyethene.

- (A) addition
- (B) elimination
- (C) substitution
- (D) condensation

QUESTION 2

Structural isomers are compounds with the same molecular formula but a different

- (A) molar mass.
- (B) molecular mass.
- (C) empirical formula.
- (D) arrangement of atoms.

QUESTION 3

Which option is true for the redox equation?

$$Fe(s) + CuCl_2(aq) \rightarrow FeCl_2(aq) + Cu(s)$$

- (A) Fe is oxidised and Cu is the oxidising agent
- (B) Fe is oxidised and Cu²⁺ is the oxidising agent
- (C) Fe²⁺ is oxidised and Cu is the oxidising agent
- (D) Fe²⁺ is oxidised and Cu²⁺ is the oxidising agent

Which pair of reagents would react to form a glycosidic bond?

- (A) lysine and aniline
- (B) glucose and galactose
- (C) methanol and butanoic acid
- (D) glycerol and sodium hydroxide

QUESTION 5

Phosphorus pentoxide is prepared by burning phosphorus in oxygen.

$$P_4(s) + 5O_2(g) \rightarrow P_4O_{10}(s)$$

Calculate the percentage yield if 10.0 g of P_4O_{10} is produced when 0.200 mol of P_4 and 0.200 mol of O_2 are reacted.

- (A) 2.0%
- (B) 3.5%
- (C) 17.6%
- (D) 88.0%

QUESTION 6

The equilibrium concentration of A is 2.8×10^{-4} M and B is 1.2×10^{-4} M.

$$A(g) \rightleftharpoons B(g) \quad \Delta H > 0$$

Which option represents the ratio of molecules present in a sample of the gaseous mixture when the temperature is decreased and a new equilibrium established?

- (A) 8 molecules of A and 2 molecules of B
- (B) 5 molecules of A and 5 molecules of B
- (C) 3 molecules of A and 7 molecules of B
- (D) 2 molecules of A and 8 molecules of B

Compound X in these reaction pathways is

- (A) a ketone.
- (B) an alkene.
- (C) an aldehyde.
- (D) a carboxylic acid.

QUESTION 8

Predict how the system shown will respond when a small amount of aqueous sodium hydroxide is added.

$$CH_3COOH(aq) + H_2O(l) \rightleftharpoons CH_3COO^-(aq) + H_3O^+(aq)$$

- (A) Equilibrium shifts to the left and the pH decreases.
- (B) Equilibrium shifts to the right and the pH increases.
- (C) Equilibrium shifts to the left and the pH remains the same.
- (D) Equilibrium shifts to the right and the pH remains the same.

The IUPAC name for this molecule is

(A) 2-chloro-3-fluorobutane.

(B) 2-fluoro-3-chlorobutane.

(C) 2-dimethyl-1-chloro-2-fluoroethane.

(D) 1,2-dimethyl-1-fluoro-2-chloroethane.

QUESTION 10

The midpoint of the colour change of a weak acid indicator occurs when

(A)
$$[In^{-}] = [H^{+}]$$

(B)
$$[In^-] = [HIn]$$

(C)
$$[H^+] = [OH^-]$$

(D)
$$[HIn] = [OH^-]$$

QUESTIONS 11–12

These questions refer to the diagram shown.

QUESTION 11

Determine the species that travels through the salt bridge towards the reduction half-cell in the electrochemical cell at standard conditions.

- (A) zinc ions
- (B) nitrate ions
- (C) copper ions
- (D) potassium ions

QUESTION 12

The zinc electrode

- (A) gains electrons and acts as the anode.
- (B) acts as the cathode and has a positive charge.
- (C) undergoes reduction and has a negative charge.
- (D) is oxidised and donates electrons to the copper ions.

Determine the K_a of an unknown weak acid (HA) with an aqueous concentration of 0.12 M and a pH of 3.2.

- (A) 5.2×10^{-3}
- (B) 6.3×10^{-4}
- (C) 3.3×10^{-6}
- (D) 4.0×10^{-7}

QUESTION 14

The mass spectrum for Compound X is found to have signals at the following m/z values.

Compound X is

- (A) butanal.
- (B) butanol.
- (C) butanone.
- (D) butanoic acid.

The structure of an amino acid is shown.

This molecule contains an amine group and a

(A) carboxyl group.

(B) hydroxy group.

(C) methyl group.

(D) ketone group.

QUESTION 16

Determine the oxidation state of manganese in MnO₄⁻.

(A) +1

(B) +2

(C) +7

(D) +8

QUESTION 17

Identify the redox reaction.

 $(A) \quad CaCO_3(s) \to CaO(s) + CO_2(g)$

(B) $CaO(s) + H_2O(l) \rightarrow Ca(OH)_2(s)$

(C) $Cl_2(g) + H_2O(l) \rightarrow HCl(aq) + HClO(aq)$

(D) $NaOH(aq) + HCl(aq) \rightarrow NaCl(aq) + H_2O(l)$

Determine the K_b expression for the weak base shown in the equilibrium equation.

$$NH_3(aq) + H_2O(l) \rightleftharpoons NH_4^+(aq) + OH^-(aq)$$

(A)
$$K_b = \frac{[NH_3][H_2O]}{[NH_4^+]}$$

(B)
$$K_b = \frac{[NH_3][H_2O]}{[OH^-]}$$

(C)
$$K_b = \frac{[NH_4^+][OH^-]}{[NH_3]}$$

(D)
$$K_b = \frac{[NH_4^+][OH^-]}{[H_2O]}$$

QUESTION 19

Three voltaic cells are constructed with metal Q as one electrode and metals R, S or T as the other electrode. The potential differences for the cells are shown in the table.

Voltaic cell	Half-cell	Half-cell	Potential difference (V)
1	$Q(s)/Q^{2+}(aq)$	$R^+(aq)/R(s)$	1.18
2	$Q(s) / Q^{2+}(aq)$	$S^{2+}(aq) / S(s)$	0.72
3	$T(s) / T^{3+}(aq)$	$Q^{2+}(aq)/Q(s)$	0.95

The relative strength of the reducing agents from strongest to weakest is

- $(A) \quad T > Q > S > R$
- (B) S > Q > T > R
- (C) R > Q > S > T
- (D) Q > R > T > S

The two forms of polypropene shown are

	1	2
(A)	syntactic	atactic
(B)	isotactic	atactic
(C)	isotactic	syntactic
(D)	atactic	syntactic

THIS PAGE IS INTENTIONALLY BLANK

References

Question 14

Mass spectrum (electron ionization), https://webbook.nist.gov/cgi/cbook.cgi?ID=C78933&Mask=200#Mass-Spec, © 2021 by the U.S. Secretary of Commerce on behalf of the United States of America. All rights reserved.