

School name \square
Given name/s \square

External assessment 2021

Chemistry

Paper 2

Time allowed

- Perusal time - 10 minutes
- Working time - 90 minutes

General instructions

- Answer all questions in this question and response book.
- Write using black or blue pen.
- QCAA-approved calculator permitted.
- QCAA formula and data book provided.
- Planning paper will not be marked.

Section 1 (51 marks)

- 5 short response questions

DO NOT WRITE ON THIS PAGE

THIS PAGE WILL NOT BE MARKED

Section 1

Instructions

- If you need more space for a response, use the additional pages at the back of this book.
- On the additional pages, write the question number you are responding to.
- Cancel any incorrect response by ruling a single diagonal line through your work.
- Write the page number of your alternative/additional response, i.e. See page ...
- If you do not do this, your original response will be marked.

DO NOT WRITE ON THIS PAGE

THIS PAGE WILL NOT BE MARKED

QUESTION 1 (11 marks)

Phosphoric acid $\left(\mathrm{H}_{3} \mathrm{PO}_{4}\right)$ is a common triprotic acid that dissociates fully in three stages. The dissociation equations are shown in the table.

Stage	Dissociation equation	$\boldsymbol{K}_{\mathbf{a}}$
1	$\mathrm{H}_{3} \mathrm{PO}_{4}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightleftharpoons \mathrm{H}_{2} \mathrm{PO}_{4}^{-}(\mathrm{aq})+\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})$	7.1×10^{-3}
2	$\mathrm{H}_{2} \mathrm{PO}_{4}{ }^{-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightleftharpoons \mathrm{HPO}_{4}{ }^{2-}(\mathrm{aq})+\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})$	6.5×10^{-8}
3	$\mathrm{HPO}_{4}{ }^{2-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightleftharpoons \mathrm{PO}_{4}{ }^{3-}(\mathrm{aq})+\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})$	4.5×10^{-13}

a) Use the information to determine the strongest Brønsted-Lowry acid and its conjugate base. Explain your reasoning.

Acid: \qquad Conjugate base: \qquad

Reasoning: \qquad
\qquad
\qquad
\qquad
\qquad
\qquad
b) Identify an amphiprotic species from the dissociation reactions. Explain your reasoning. [2 marks]
\qquad
\qquad
\qquad
\qquad

Do not write outside this box.
c) Determine the K_{b} value for the strongest conjugate base formed when $\mathrm{H}_{3} \mathrm{PO}_{4}$ has fully dissociated. Show your working.
\qquad
\qquad
\qquad
\qquad

$$
K_{\mathrm{b}}=
$$

\qquad (to two significant figures)
d) Calculate the pH of a 0.05 M solution of dihydrogen phosphate $\left(\mathrm{H}_{2} \mathrm{PO}_{4}^{-}\right)$. Show your working and state any assumptions made.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
$\mathrm{pH}=$ (to one decimal place)

Do not write outside this box.

QUESTION 2 (10 marks)

Polypropene (PP) is a polymer formed from propene. Polyethylene terephthalate (PET) is a polymer formed from monomers of carboxylic acid and alcohol. A section of the PET polymer is shown.

a) Draw the structural formulas of the monomers used to form PET.
i) Carboxylic acid monomer
\square
ii) Alcohol monomer
\square
Note: If you make a mistake in the drawing, cancel it by ruling a single diagonal line through your work and use the additional response space on page 16 of this question and response book.
b) Determine the type of polymerisation used to form PET.
c) Identify the functional group formed by the reaction of the monomers in PET.
\qquad
d) Determine the type of polymerisation used to form PP.
\qquad
e) Explain how the position of the methyl group on the polymer chain affects the strength of isotactic PP, relative to syntactic PP.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad Do not write outside this box.

QUESTION 3 (11 marks)

Four colourless liquids, A, B, C and D, are known to be butane, 1-butene, 2-butanol and 1-propanol. Reactions are carried out to identify the liquids. The results are shown.

Test 1	A	B	C	D
Bromine $\left(\mathrm{Br}_{2}\right)$ water	No reaction	No reaction	No reaction	Decolourised

Test 2	A	B	C
Excess acidified potassium manganate(VII) $\left(\mathrm{KMnO}_{4}\right)$ solution, heated gently	Decolourised, Compound X formed	Decolourised, Compound Y formed	No reaction

Test 3	Compound \mathbf{X}	Compound Y
Ethanol and concentrated sulfuric acid solution, heated gently and refluxed	Fruity smell produced, Compound Z formed	No apparent reaction

a) Identify Compound D. Explain your reasoning. [2 marks]
\qquad
\qquad
\qquad
b) Write a balanced equation to describe the decolourisation of bromine $\left(\mathrm{Br}_{2}\right)$ water by Compound D. Apply IUPAC rules to name the product formed.

IUPAC name: \qquad
c) Identify Compound C. Explain your reasoning.
\qquad
\qquad
\qquad
\qquad
d) Draw the structural formula of Compound Y .
[1 mark]
\square

Note: If you make a mistake in the drawing, cancel it by ruling a single diagonal line through your work and use the additional response space on page 17 of this question and response book.
e) Identify Compound B.
[1 mark]
\qquad
f) Draw the structural formula of Compound Z .
[1 mark]

Note: If you make a mistake in the drawing, cancel it by ruling a single diagonal line through your work and use the additional response space on page 17 of this question and response book.
g) Apply IUPAC rules to name Compound Z .

IUPAC name: \qquad

Do not write outside this box.

QUESTION 4 (9 marks)

5.00×10^{-4} moles of hydrogen gas is mixed with 1.00×10^{-3} moles of iodine vapour in a sealed 1.00 L vessel at $455.0^{\circ} \mathrm{C}$. The concentration of hydrogen iodide gas formed at equilibrium is $9.30 \times 10^{-4} \mathrm{M}$.
The balanced equation for the reaction is shown.

$$
\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{HI}(\mathrm{~g})
$$

a) Write the equilibrium law expression for the reaction.
\qquad
\qquad
b) Calculate the equilibrium constant $\left(K_{\mathrm{c}}\right)$ for the reaction at $455.0^{\circ} \mathrm{C}$.

Show your working.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
$K_{\mathrm{c}}=$ \qquad (to three significant figures)

[^0]c) Predict the effect that adding a catalyst would have on the reaction rates, position of the equilibrium and value of K_{c}.
\qquad
\qquad
\qquad
\qquad

QUESTION 5 (10 marks)

A sample of iron ore was tested for its iron content using the experimental procedure outlined.
8.00 g of iron

ore sample \longrightarrow\begin{tabular}{c}
Reacted with

$\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})$

$\longrightarrow \mathrm{Fe}^{2+}(\mathrm{aq}) \longrightarrow$

Titrated with

$K M n O_{4}(\mathrm{aq})$
\end{tabular}$\longrightarrow \mathrm{Fe}^{3+}(\mathrm{aq})$

All the iron (Fe) in the sample was converted to $\mathrm{Fe}^{2+}(\mathrm{aq})$ by reacting it with $\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})$, forming hydrogen gas. The solution made up to a final volume of 500.0 mL . A 25.00 mL aliquot of the Fe^{2+} aqueous solution was titrated with a standardised solution of $0.0500 \mathrm{M} \mathrm{KMnO}_{4}$. An average titre of 16.40 mL was obtained.
a) Write a balanced chemical equation for the reaction between the iron (Fe) in the ore sample and sulfuric acid.
b) Identify the species oxidised in the reaction in Question 5a). Explain your reasoning.
\qquad
\qquad
c) Apply your understanding of half-equations to balance the redox equation.
$\mathrm{MnO}_{4}{ }^{-}(\mathrm{aq})+$ \qquad $\mathrm{H}^{+}(\mathrm{aq})+$ \qquad $\mathrm{Fe}^{2+}(\mathrm{aq}) \rightarrow \mathrm{Mn}^{2+}(\mathrm{aq})+$ \qquad $\mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\quad \mathrm{Fe}^{3+}(\mathrm{aq})$
d) Calculate the percentage of iron (Fe) in the ore sample. Show your working.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Do not write outside this box.

END OF PAPER

ADDITIONAL PAGE FOR STUDENT RESPONSES

Write the question number you are responding to.
\qquad

Do not write outside this box.

ADDITIONAL PAGE FOR STUDENT RESPONSES

Write the question number you are responding to.
\qquad

Do not write outside this box.

ADDITIONAL PAGE FOR STUDENT RESPONSES

Write the question number you are responding to.
\qquad

Do not write outside this box.

ADDITIONAL PAGE FOR STUDENT RESPONSES

Write the question number you are responding to.
\qquad

Do not write outside this box.

ADDITIONAL RESPONSE SPACE FOR QUESTION 2a)

If you want this drawing to be marked, rule a single diagonal line through the drawing on page 4.
i) Carboxylic acid monomer
ii) Alcohol monomer

ADDITIONAL RESPONSE SPACE FOR QUESTION 3d)

If you want this drawing to be marked, rule a single diagonal line through the drawing on page 7 .
\square

ADDITIONAL RESPONSE SPACE FOR QUESTION 3f)

If you want this drawing to be marked, rule a single diagonal line through the drawing on page 7 .

[^0]: Do not write outside this box.

