LUI								School code
Schoo	ol nam	e						
Given	name	e/s						Attach your
Famil	y nam	e						barcode ID label here
г.	1							Book of books used
Exte	rnal	asse	ssme	nt				
								Question and response book

Chemistry

Paper 2

Time allowed

- Perusal time 10 minutes
- Working time 90 minutes

General instructions

- Answer all questions in this question and response book.
- Write using black or blue pen.
- QCAA-approved calculator permitted.
- QCAA formula and data book provided.
- Planning paper will not be marked.

Section 1 (60 marks)

• 5 short response questions

DO NOT WRITE ON THIS PAGE

THIS PAGE WILL NOT BE MARKED

Section 1

Instructions

- If you need more space for a response, use the additional pages at the back of this book.
 - On the additional pages, write the question number you are responding to.
 - Cancel any incorrect response by ruling a single diagonal line through your work.
 - Write the page number of your alternative/additional response, i.e. See page ...
 - If you do not do this, your original response will be marked.

DO NOT WRITE ON THIS PAGE

THIS PAGE WILL NOT BE MARKED

QUES	STION 1 (12 marks)
	zinc metal was placed into a blue solution of copper(II) nitrate, the solution rown deposit of copper formed on the bottom of the beaker.
a) l	Identify if the reaction that occurred can be classified as a redox reaction.

into a blue solution of copper(II) nitrate, the solution became colourless and formed on the bottom of the beaker.

Explain your reasoning.	[3 marks]

b) When the copper deposited in the reaction was collected and reacted with concentrated nitric acid, copper(II) nitrate solution and nitrogen dioxide gas formed.

$${\rm Cu(s)} + 4 \, {\rm HNO_3\,(aq)} \rightarrow {\rm Cu(NO_3)_2(aq)} + 2 \, {\rm NO_2\,(g)} + 2 \, {\rm H_2O\,(l)} \qquad \qquad E^{\circ} = +0.46 \, {\rm V}$$

i) Determ	ine the reduction half-equation for this reaction.	[2 marks]
-----------	--	-----------

ii) Determine the standard reduction potential, E° , for the reduction half-equation.	[1 mark]

i) copper can dissolve in concentrated nitric acid, but does not dissolve in concentrated hydrochloric acid.	[3 marks
ii) NO ₂ is the gaseous product, rather than H ₂ , when copper dissolves in nitric acid.	[3 marks

QUESTION 2 (12 marks)

Salicylic acid reacts with ethanoic anhydride in an aqueous solution to produce acetylsalicylic acid, as shown in the equation. Acetylsalicylic acid is commonly known as aspirin.

OH
$$C-CH_3$$

$$C+CH_3$$

- salicylic acid $(C_7H_6O_3)$
- ethanoic anhydride (C₄H₆O₃)
- acetylsalicylic acid $(C_9H_8O_4)$
- ethanoic acid (C₂H₄O₂)
- a) Identify the type of chemical reaction used to produce aspirin.

[1 mark]

b) Write the equilibrium expression, K_c , for the reaction.

[1 mark]

c) At 20 °C, the equilibrium constant (K_c) for the reaction is 2×10^{-3} . Determine whether the concentration of the reactants or products is greater at equilibrium at this temperature. [2 marks]

	Mass =	mg (to three significant figures)	
of a	cetylsalicylic acid and ethanoic acid	nd equilibrium is re-established, the concentration of increases. Apply Le Châtelier's principle to predefend the mic. Explain your reasoning	lict
of a	cetylsalicylic acid and ethanoic acid		
of a	cetylsalicylic acid and ethanoic acid	l increases. Apply Le Châtelier's principle to pred	lict
of a	cetylsalicylic acid and ethanoic acid	l increases. Apply Le Châtelier's principle to pred	lict
of a	cetylsalicylic acid and ethanoic acid	l increases. Apply Le Châtelier's principle to pred	lict
of a	cetylsalicylic acid and ethanoic acid	l increases. Apply Le Châtelier's principle to pred	lict
of a	cetylsalicylic acid and ethanoic acid	l increases. Apply Le Châtelier's principle to pred	lict
of a	cetylsalicylic acid and ethanoic acid	l increases. Apply Le Châtelier's principle to pred	lict
of a	cetylsalicylic acid and ethanoic acid	l increases. Apply Le Châtelier's principle to pred	lict
of a	cetylsalicylic acid and ethanoic acid	l increases. Apply Le Châtelier's principle to pred	lict
of a	cetylsalicylic acid and ethanoic acid	l increases. Apply Le Châtelier's principle to pred	lict
of a	cetylsalicylic acid and ethanoic acid	l increases. Apply Le Châtelier's principle to pred	lict
of a	cetylsalicylic acid and ethanoic acid	l increases. Apply Le Châtelier's principle to pred	lict

a) 	Describe the production of ethanol by fermentation of glucose by writing a balanced equation and indicating if a catalyst is required.	[3 mark
b)	Calculate the atom economy for the production of ethanol by fermentation of glucose.	[2 mark:
	Atom economy =%	
c)	In terms of atom economy, determine which process for the production of ethanol (i.e. hydration of ethene or fermentation of glucose) is greener.	[2 marks

u)	Identify two principles of green chemistry, other than atom economy, that make the production of ethanol by fermentation greener than by hydration.	[2 marks

QUESTION 4 (10 marks)

Consider the organic molecule shown.

$$H_3C$$
 $C = CH_2$

a) Identify the molecule as saturated or unsaturated.

[1 mark]

b) Apply IUPAC rules to name this molecule.

[1 mark]

c) Write an equation to show the products formed by the hydration of this molecule.

[2 marks]

d) Predict which is the major product formed in c).

[1 mark]

products for	med by hydration in c). Explain your reasonin	g.	[5 mark.

QUESTION 5 (17 marks)

Compound A reacts with water to produce compound B and hydroxide ions.

$$CH_3CH_2NH_2(aq) + H_2O(l) f C_2H_5NH_3^+(aq) + OH^-(aq)$$
A
B

a) Apply IUPAC rules to name compound A.

[1 mark]

b) Identify the Brønsted-Lowry acids in the equation.

[2 marks]

c) A small amount of hydrochloric acid is added to the equilibrium mixture. Predict the effect of this on the concentration of compound A in the mixture. Explain your reasoning. [3 marks]

d) Calculate the pH of a 2.0 M solution of compound A. State any assumptions. Show your working. $(K_b = 5.6 \times 10^{-4})$

[6 marks]

	Г						
		pH =		(to one de	ecimal place)		
e) Describromo	ibe, using a lomethane. In	balanced chen	nical equation	to one de , how Compound reagents in yo	nd A could be 1	made from	[5 mark
e) Describromo	ibe, using a lomethane. In	balanced chen	nical equation	, how Compoun	nd A could be 1	made from	[5 mark
e) Describromo	ibe, using a lomethane. In	balanced chen	nical equation	, how Compoun	nd A could be 1	made from	[5 mark
e) Describromo	ibe, using a lomethane. In	balanced chen	nical equation	, how Compoun	nd A could be 1	made from	[5 mark
e) Describromo	ibe, using a l	balanced chen	nical equation	, how Compoun	nd A could be 1	made from	[5 mark
e) Describromo	be, using a lomethane. In	balanced chen	nical equation	, how Compoun	nd A could be 1	made from	[5 mark
e) Describromo	ibe, using a l	balanced chen	nical equation	, how Compoun	nd A could be 1	made from	[5 mark

© State of Queensland (QCAA) 2020

Licence: https://creativecommons.org/licenses/by/4.0 | Copyright notice: www.qcaa.qld.edu.au/copyright — lists the full terms and conditions, which specify certain exceptions to the licence. | Attribution: © State of Queensland (QCAA) 2020