Specialist Mathematics marking guide

External assessment 2022

Paper 1: Technology-free (60 marks)

Paper 2: Technology-active (60 marks)

Assessment objectives

This assessment instrument is used to determine student achievement in the following objectives:

1. select, recall and use facts, rules, definitions and procedures drawn from Units 3 and 4
2. comprehend mathematical concepts and techniques drawn from Units 3 and 4
3. communicate using mathematical, statistical and everyday language and conventions
4. evaluate the reasonableness of solutions
5. justify procedures and decisions by explaining mathematical reasoning
6. solve problems by applying mathematical concepts and techniques drawn from Units 3 and 4 .

Purpose

This marking guide:

- provides a tool for calibrating external assessment markers to ensure reliability of results
- indicates the correlation, for each question, between mark allocation and qualities at each level of the mark range
- informs schools and students about how marks are matched to qualities in student responses.

Mark allocation

Where a response does not meet any of the descriptors for a question or a criterion, a mark of ' 0 ' will be recorded.

Where no response to a question has been made, a mark of ' N ' will be recorded.
Allow FT mark/s — refers to 'follow through', where an error in the prior section of working is used later in the response, a mark (or marks) for the rest of the response can still be awarded so long as it still demonstrates the correct conceptual understanding or skill in the rest of the response.

This mark may be implied by subsequent working - the full mathematical reasoning and/or working, as outlined in the sample response and associated mark, is not explicitly stated in the student response, but by virtue of subsequent working there is sufficient evidence to award the mark/s.

Marking guide

Multiple choice
Paper 1: Technology-free (60 marks)

Question	Response
1	B
2	C
3	B
4	D
5	A
6	D
7	A
8	D
9	C
10	

Short response

Q	Sample response	The response:
11a)	$\boldsymbol{v}_{\mathbf{1}}(t)=2 \hat{\boldsymbol{\imath}}+\hat{\boldsymbol{j}}-2 \widehat{\boldsymbol{k}}$	- correctly determines the velocity vector [1 mark]
11b)	$\begin{aligned} & \text { Require } r_{1} \cdot v_{1}=0 \\ & \left(\begin{array}{c} 2 t+1 \\ t+3 \\ -(2 t-3) \end{array}\right) \cdot\left(\begin{array}{c} 2 \\ 1 \\ -2 \end{array}\right)=0 \\ & 2(2 t+1)+1(t+3)+2(2 t-3)=0 \\ & 9 t-1=0 \\ & t=\frac{1}{9} \mathrm{~s} \end{aligned}$	- establishes an equation in the form $x_{1} x_{2}+y_{1} y_{2}+z_{1} z_{2}=0$ [1 mark] - solves equation to determine the time [1 mark]
11c)	Let $r_{1}(t)=r_{2}(t)$ Equating $\hat{\imath}, \hat{\jmath}$ and \widehat{k} components $\begin{align*} & 2 t+1=16-4 t \tag{1}\\ & t+3=-3 t+13 \tag{2}\\ & -2 t+3=2 \tag{3} \end{align*}$ From (1), $t=2.5 \mathrm{~s}$ From (2), $t=2.5 \mathrm{~s}$ From (3), $t=0.5 \mathrm{~s}$ The particles do not collide as the solutions are not consistent.	- correctly equates 2 pairs of components for the particles, one of which must be the $\widehat{\boldsymbol{k}}$ component, to form 2 equations [1 mark] - solves equations to determine two different time values [1 mark] - uses mathematical reasoning to make an appropriate conclusion whether the two particles collide [1 mark]

12 Method 1

$$
\begin{aligned}
& \text { Prove }\left|\frac{z_{1}}{z_{2}}\right|=\frac{\left|z_{1}\right|}{\left|z_{2}\right|} \text {, given } z_{1}=a+b i, z_{2}=c+d i, \\
& \begin{aligned}
z_{2} & \neq 0 \\
\text { LHS } & =\left|\frac{a+b i}{c+d i}\right| \\
& =\left|\frac{(\boldsymbol{a}+\boldsymbol{b} \boldsymbol{i})}{(\boldsymbol{c}+\boldsymbol{d} \boldsymbol{i})} \cdot \frac{(\boldsymbol{c}-\boldsymbol{d} \boldsymbol{i})}{(\boldsymbol{c}-\boldsymbol{d} \boldsymbol{i})}\right| \\
& =\left|\frac{\boldsymbol{a} \boldsymbol{c}-\boldsymbol{a d} \boldsymbol{i}+\boldsymbol{b} \boldsymbol{c} \boldsymbol{i}-\boldsymbol{b d i} \boldsymbol{i}^{2}}{\boldsymbol{c}^{2}+\boldsymbol{d}^{2}}\right|
\end{aligned}
\end{aligned}
$$

$=$ RHS
QED

- correctly multiplies the numerator and denominator by the complex conjugate of z_{2} [1 mark]
- realises denominator (in simplest form) and expands numerator [1 mark]

$$
=\left|\frac{(a c+b d)+(b c-a d) i}{c^{2}+d^{2}}\right|
$$

$$
=\sqrt{\frac{(a c+b d)^{2}+(b c-a d)^{2}}{\left(c^{2}+d^{2}\right)^{2}}}
$$

- determines modulus of the expression [1 mark]

$$
=\sqrt{\frac{(a c)^{2}+2 a b c d+(b d)^{2}+(b c)^{2}-2 a b c d+(a d)^{2}}{\left(c^{2}+d^{2}\right)^{2}}}
$$

$$
=\sqrt{\frac{(a c)^{2}+(b d)^{2}+(b c)^{2}+(a d)^{2}}{\left(c^{2}+d^{2}\right)^{2}}}
$$

- simplifies numerator [1 mark]

$$
=\sqrt{\frac{a^{2}\left(c^{2}+d^{2}\right)+b^{2}\left(c^{2}+d^{2}\right)}{\left(c^{2}+d^{2}\right)^{2}}}
$$

$$
=\sqrt{\frac{\left(a^{2}+b^{2}\right)\left(c^{2}+d^{2}\right)}{\left(c^{2}+d^{2}\right)^{2}}}
$$

- factorises numerator [1 mark]

$$
=\frac{\sqrt{a^{2}+b^{2}}}{\sqrt{c^{2}+d^{2}}}
$$

$$
=\frac{\left|z_{1}\right|}{\left|z_{2}\right|}
$$

- completes the proof using mathematical reasoning [1 mark]

Q	Sample response	The response:
	Method 2 $\begin{aligned} & z_{1}= a+b i=\sqrt{a^{2}+b^{2}} \operatorname{cis}\left(\theta_{1}\right), \operatorname{Arg}\left(z_{1}\right)=\theta_{1} \\ & z_{2}= c+d i=\sqrt{c^{2}+d^{2}} \operatorname{cis}\left(\theta_{2}\right), z_{2} \neq 0, \operatorname{Arg}\left(z_{2}\right)=\theta_{2} \\ & \text { LHS }=\left\|\frac{\sqrt{a^{2}+b^{2}} \operatorname{cis}\left(\theta_{1}\right)}{\sqrt{c^{2}+d^{2}} \operatorname{cis}\left(\theta_{2}\right)}\right\| \\ &=\left\|\frac{\sqrt{a^{2}+b^{2}}}{\sqrt{c^{2}+d^{2}}} \operatorname{cis}\left(\theta_{1}-\theta_{2}\right)\right\| \\ &=\left\|\frac{\sqrt{a^{2}+b^{2}}}{\sqrt{c^{2}+d^{2}}}\right\| \\ &=\frac{\sqrt{a^{2}+b^{2}}}{\sqrt{c^{2}+d^{2}}} \\ & \text { RHS } \left.=\frac{\mid \sqrt{a^{2}+b^{2}}}{} \operatorname{Arg}\left(z_{1}\right) \right\rvert\, \\ & \sqrt{c^{2}+d^{2}} \operatorname{Arg}\left(z_{2}\right) \mid \\ &=\frac{\left\|\sqrt{a^{2}+b^{2}}\right\|}{\left\|\sqrt{c^{2}+d^{2}}\right\|} \\ &=\frac{\sqrt{a^{2}+b^{2}}}{\sqrt{c^{2}+d^{2}}} \\ &=\text { LHS } \end{aligned}$	- correctly determines the magnitude of z_{1} and z_{2} [1 mark] - correctly expresses the argument of z_{1} and z_{2} [1 mark] - uses De Moivre's formula to express quotient of modulus [1 mark] - uses De Moivre's formula to express difference of arguments [1 mark] - determines magnitude of quotient [1 mark] - completes the proof using mathematical reasoning [1 mark]

Q	Sample response	The response:
13a)	Using partial fractions $\begin{aligned} & \frac{22}{(2 x-3)(x+4)}=\frac{A}{2 x-3}+\frac{B}{x+4} \\ & \therefore 22=A(x+4)+B(2 x-3) \\ & \text { Let } x=\frac{3}{2}: \quad A\left(\frac{3}{2}+4\right)=2 \Rightarrow A=4 \\ & \text { Let } x=-4: B(2 \times-4-3)=22 \Rightarrow B=-2 \\ & \int \frac{22}{2 x^{2}+5 x-12} d x=\int \frac{4}{2 x-3} d x+\int \frac{-2}{x+4} d x \\ & =2 \int \frac{2}{2 x-3} d x-2 \int \frac{1}{x+4} d x \\ & =2 \ln \|2 x-3\|-2 \ln \|x+4\|+c \end{aligned}$	- correctly sets up the partial fractions [1 mark] - determines value of A [1 mark] - determines value of B [1 mark] - determines an expression for the indefinite integral [1 mark]
13b)	$\begin{aligned} & \int_{-3}^{0} \frac{22}{(2 x-3)(x+4)} d x \\ & =\left.(2 \ln \|2 x-3\|-2 \ln \|x+4\|)\right\|_{-3} ^{0} \\ & =((2 \ln \|-3\|-2 \ln \|4\|)-(2 \ln \|-9\|-2 \ln \|1\|)) \\ & =2(\ln (3)-\ln (4)-\ln (9))=2 \ln \left(\frac{3}{9 \times 4}\right) \\ & =2 \ln \left(\frac{1}{12}\right) \end{aligned}$	- substitutes limits of integration into the result from 13a) [1 mark] - expresses a definite integral value in simplest form [1 mark]

Q	Sample response	The response:
14a)	Substituting $\mathrm{A}(-4,-2)$ $\begin{aligned} \frac{d y}{d x} & =\frac{-0.5(-2-4)}{-4} \\ & =-\frac{3}{4} \end{aligned}$	- correctly substitutes the coordinates of A into the differential equation [1 mark] - determines a value of the slope at A [1 mark]
14b)		- correctly shows a solution curve that starts at $(-6,3.5)$ and has a negative slope in the 2nd quadrant [1 mark] - correctly shows a solution curve with an asymptotic nature in the 3rd quadrant as $x \rightarrow 0^{-}$ and there is no solution curve in the 1 st or 4 th quadrant [1 mark]

Q Sample response

Q	Sample response	The response
16a)	Rearranging equations: $\begin{aligned} & x+5 y-2 z=1 \\ & x-3 y+z=3 \\ & 8 y-3 z=\lambda \end{aligned}$ Expressing in matrix form: $\left[\begin{array}{ccc\|c} 1 & 5 & -2 & 1 \\ 1 & -3 & 1 & 3 \\ 0 & 8 & -3 & \lambda \end{array}\right]$ $\left[\begin{array}{ccc\|c} 1 & 5 & -2 & 1 \\ 0 & -8 & 3 & 2 \\ 0 & 8 & -3 & \lambda \end{array}\right] \quad \boldsymbol{R}_{2}^{\prime}=\boldsymbol{R}_{2}-\boldsymbol{R}_{\mathbf{1}}$ $\left[\begin{array}{ccc\|c} 1 & 5 & -2 & 1 \\ 0 & -8 & 3 & 2 \\ 0 & 0 & 0 & \lambda+2 \end{array}\right] \quad R_{3}^{\prime}=R_{3}+R_{2}$ For $\lambda=-2$ there are infinitely many solutions.	- correctly rearranges the three equations [1 mark] - establishes an augmented matrix [1 mark] - establishes a row of zeros in the row containing λ [1 mark] - determines a value of λ [1 mark]
16b)	Method 1 using $\left[\begin{array}{ccc\|c}1 & 5 & -2 & 1 \\ 0 & -8 & 3 & 2 \\ 0 & 0 & 0 & 0\end{array}\right]$ Letting $z=k(k \in R)$ Row 2: $-8 y+3 z=2$ $8 y-3 k=-2 \Rightarrow y=\frac{3 k-2}{8}$ Row 1: $x+5 y-2 z=1$ $\begin{aligned} & x+5\left(\frac{3 k-2}{8}\right)-2 k=1 \\ & x+\frac{15 k-10}{8}-\frac{16 k}{8}=1 \Rightarrow x=\frac{k}{8}+\frac{9}{4} \end{aligned}$	- expresses y in terms of a parameter [1 mark] - expresses x in terms of a parameter [1 mark]

Q Sample response
The response
The solutions in vector form are:
$\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{c}\frac{1}{8} \\ \frac{3}{8} \\ 1\end{array}\right] k+\left[\begin{array}{c}\frac{9}{4} \\ -\frac{1}{4} \\ 0\end{array}\right]$
Method 2 using $\left[\begin{array}{ccc|c}1 & 5 & -2 & 1 \\ 0 & -8 & 3 & 2 \\ 0 & 0 & 0 & 0\end{array}\right]$
$\left[\begin{array}{ccc|c}1 & 5 & -2 & 1 \\ 0 & 1 & -\frac{3}{8} & -\frac{1}{4} \\ 0 & 0 & 0 & 0\end{array}\right] \quad \boldsymbol{R}_{2}^{\prime}=\frac{\boldsymbol{R}_{2}}{-8}$
$\left[\begin{array}{ccc|c}1 & 0 & -\frac{1}{8} & \frac{9}{4} \\ 0 & 1 & -\frac{3}{8} & -\frac{1}{4} \\ 0 & 0 & 0 & 0\end{array}\right] \quad \boldsymbol{R}_{1}^{\prime}=\boldsymbol{R}_{\mathbf{1}}-\mathbf{5} \boldsymbol{R}_{\mathbf{2}}$
Letting $z=k(k \in R)$
$x=\frac{k}{8}+\frac{9}{4}$
$y=\frac{3 k}{8}-\frac{1}{4}$
The solutions in vector form are:
$\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{c}\frac{1}{8} \\ \frac{3}{8} \\ 1\end{array}\right] k+\left[\begin{array}{r}\frac{9}{4} \\ -\frac{1}{4} \\ 0\end{array}\right]$

- determines the infinite solutions expressed in the form of a vector equation of a line [1 mark]
- expresses x in terms of a parameter [1 mark]
- expresses y in terms of a parameter [1 mark]
- determines the infinite solutions expressed in the form of a vector equation of a line [1 mark]

Method 3 using $\left[\begin{array}{ccc|c}1 & 5 & -2 & 1 \\ 1 & -3 & 1 & 3 \\ 0 & 8 & -3 & -2\end{array}\right]$
Letting $y=k(k \in R)$
Row 3: $-8 y+3 z=2$
$-8 k+3 z=2$
$z=\frac{8 k}{3}+\frac{2}{3}$

Row 2: $x-3 y+z=3$
$x-3 k+\frac{8 k}{3}+\frac{2}{3}=3$
$x=\frac{k}{3}+\frac{7}{3}$

The solutions in vector form are:
$\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{c}\frac{1}{3} \\ 1 \\ \frac{8}{3}\end{array}\right] k+\left[\begin{array}{c}\frac{7}{3} \\ 0 \\ \frac{2}{3}\end{array}\right]$

- expresses z in terms of a parameter [1 mark]
- expresses x in terms of a parameter [1 mark]
- determines the infinite solutions expressed in the form of a vector equation of a line [1 mark]

17 Volume can be found using

$$
V=\pi \int_{a}^{b} y^{2} d x
$$

$$
=\pi \int_{0}^{\frac{\pi}{2}}(1+\sin (2 x))^{2} d x
$$

$$
=\pi \int_{0}^{\frac{\pi}{2}} 1+2 \sin (2 x)+\sin ^{2}(2 x) d x
$$

$$
=\pi \int_{0}^{\frac{\pi}{2}} 1+2 \sin (2 x)+\frac{1}{2}(1-\cos (4 x)) d x
$$

$$
=\pi \int_{0}^{\frac{\pi}{2}}\left(\frac{3}{2}+2 \sin (2 x)-\frac{1}{2} \cos (4 x)\right) d x
$$

$$
V=\left.\pi\left(\frac{3}{2} x-\cos (2 x)-\frac{1}{8} \sin (4 x)\right)\right|_{0} ^{\frac{\pi}{2}}
$$

$$
=\pi\left[\left(\frac{3 \pi}{4}-\cos (\pi)-\frac{1}{8} \sin (2 \pi)\right)\right.
$$

$$
-(0-\cos (0)-0)]
$$

$$
=\pi\left(\frac{3 \pi}{4}+2\right)
$$

$$
\text { units }^{3}
$$

- correctly substitutes into the appropriate volume of a solid of revolution rule [1 mark]
- expands an integrand [1 mark]
- uses a suitable double-angle identity to enable an integration process to be completed [1 mark]
- integrates an expression [1 mark]
- determines volume in simplest form [1 mark]

18 Mathematical induction can be used to prove the proposition

$$
\begin{aligned}
& \sum_{r=0}^{2 n+1} \operatorname{cis}(r \theta) \text { is divisible by }(1+\operatorname{cis}(\theta)) \text { for } n \in Z^{+} \\
& \text {Let } n=1 \\
& \sum_{r=0}^{3} \operatorname{cis}(r \theta)= \\
& \operatorname{cis}(0)+\operatorname{cis}(\theta)+\operatorname{cis}(2 \theta)+\operatorname{cis}(3 \theta) \\
& =1+\operatorname{cis}(\theta)+(\operatorname{cis}(\theta))^{2}+(\operatorname{cis}(\theta))^{3} \\
& =(1+\operatorname{cis}(\theta))\left(1+(\operatorname{cis} \theta)^{2}\right)
\end{aligned}
$$

This expression is divisible by $(1+\operatorname{cis}(\theta))$, so the proposition is

$$
\text { true for } n=1
$$

Assume $n=k$ is true for $k \in Z^{+}$:
${ }^{2 k+1}$
$\sum_{r=0}^{2 k+1} \operatorname{cis}(r \theta)=(1+\operatorname{cis}(\theta)) Q(\theta)$ where $Q(\theta)$ is a function of θ
Let $n=k+1$
$\sum_{r=0}^{2 k+3} \operatorname{cis}(r \theta)=\sum_{r=0}^{2 k+1} \operatorname{cis}(r \theta)+\operatorname{cis}((2 k+2) \theta)+\operatorname{cis}((2 k+3) \theta)$

$$
=(1+\operatorname{cis}(\theta)) Q(\theta)+(\operatorname{cis}(\theta))^{2 k+2}+(\operatorname{cis}(\theta))^{2 k+3}
$$

$$
=(1+\operatorname{cis}(\theta)) Q(\theta)+(\operatorname{cis}(\theta))^{2 k+2}(1+\operatorname{cis}(\theta))
$$

$$
=(1+\operatorname{cis}(\theta))\left(Q(\theta)+(\operatorname{cis}(\theta))^{2 k+2}\right)
$$

$$
=(1+\operatorname{cis}(\theta)) R(\theta) \text { where } R(\theta) \text { is a function of } \theta
$$

The proposition is true for $n=k+1$. By mathematical induction, the formula is true for $n=1,2, \ldots$

- correctly proves the initial statement [1 mark]
- correctly establishes an appropriate assumption for $n=k$ [1 mark]
- expresses the sum based on $n=k+1$ in terms of the assumption [1 mark]
- expresses a result using a common factor of $(1+\operatorname{cis}(\theta))$ [1 mark]
- proves the inductive step [1 mark]

19 Method 1

$f(x)=\int e^{x} \sin ^{-1}\left(e^{x}\right) d x$
Using integration by parts:
$\int u \frac{d v}{d x} d x=u v-\int v \frac{d u}{d x} d x$
Let $u=\sin ^{-1}\left(e^{x}\right) \Rightarrow \frac{\boldsymbol{d u}}{\boldsymbol{d x}}=\frac{\boldsymbol{e}^{x}}{\sqrt{1-\boldsymbol{e}^{2 x}}}$
Let $\frac{d v}{d x}=e^{x} \Rightarrow \boldsymbol{v}=\boldsymbol{e}^{x}$
$\boldsymbol{f}(\boldsymbol{x})=e^{x} \sin ^{-1}\left(e^{x}\right)-\int \frac{e^{x}}{\sqrt{1-e^{2 x}}} \cdot e^{x} d x$

$$
=e^{x} \sin ^{-1}\left(e^{x}\right)-\int \frac{e^{2 x}}{\sqrt{1-e^{2 x}}} d x
$$

Using the substitution $\boldsymbol{u}=\mathbf{1}-\boldsymbol{e}^{2 x}$
$d u=-2 e^{2 x} d x \Rightarrow d x=\frac{d u}{-2 e^{2 x}}$
$\boldsymbol{f}(\boldsymbol{x})=e^{x} \sin ^{-1}\left(e^{x}\right)-\int \frac{e^{2 x}}{\sqrt{u}} \frac{d u}{-2 e^{2 x}}$
$=e^{x} \sin ^{-1}\left(e^{x}\right)+\frac{1}{2} \int \frac{1}{\sqrt{u}} d u$
$=e^{x} \sin ^{-1}\left(e^{x}\right)+\frac{1}{2} \frac{u^{\frac{1}{2}}}{\frac{1}{2}}+c$
$=\boldsymbol{e}^{x} \boldsymbol{\operatorname { s i n }}^{-1}\left(\boldsymbol{e}^{x}\right)+\sqrt{\mathbf{1 - \boldsymbol { e } ^ { 2 x }}}+c$
Substituting $(0,0)$ to determine the c value
$f(0)=e^{0} \sin ^{-1}\left(e^{0}\right)+\sqrt{1-e^{0}}+c$
$0=\frac{\pi}{2}+c \Rightarrow \boldsymbol{c}=-\frac{\pi}{2}$
$f(x)=e^{x} \sin ^{-1}\left(e^{x}\right)+\sqrt{1-e^{2 x}}-\frac{\pi}{2}$

- correctly determines the expressions for $\frac{d u}{d x}$ and v in preparation for the use of the integration by parts rule [1 mark]
- applies the integration by parts rule and simplifies an integrand [1 mark]
- determines a suitable substitution variable in preparation for using a substitution method of integration [1 mark]
- expresses an integrand in terms of the substitution variable [1 mark]
- determines a general solution for $f(x)$ [1 mark]
- determines a value of the constant of integration and communicates a solution [1 mark]
- shows logical organisation communicating key steps up to the stage where an integration method using substitution is considered [1 mark]

Method 2

$f(x)=\int e^{x} \sin ^{-1}\left(e^{x}\right) d x$
Using the substitution $\boldsymbol{w}=\boldsymbol{e}^{\boldsymbol{x}}$
$d w=e^{x} d x \Rightarrow d x=\frac{d w}{e^{x}}$
$f(w)=\int \sin ^{-1}(w) d w$
Using integration by parts:
$\int u \frac{d v}{d x} d x=u v-\int v \frac{d u}{d x} d x$
Let $u=\sin ^{-1}(w) \Rightarrow \frac{d u}{d \boldsymbol{w}}=\frac{1}{\sqrt{1-w^{2}}}$
Let $\frac{d v}{d w}=1 \Rightarrow \boldsymbol{v}=\boldsymbol{w}$
$\boldsymbol{f}(\boldsymbol{w})=\boldsymbol{w} \sin ^{-1}(\boldsymbol{w})-\int \frac{\boldsymbol{w}}{\sqrt{\mathbf{1 - \boldsymbol { w } ^ { 2 }}}} d w$
$=w \sin ^{-1}(w)-\int w\left(1-w^{2}\right)^{\frac{-1}{2}} d w$
$=w \sin ^{-1}(w)-\left(-\frac{1}{2}\right)(2)\left(1-w^{2}\right)^{\frac{1}{2}}$

$$
=w \sin ^{-1}(w)+\sqrt{1-w^{2}}+c
$$

Using the substitution $w=e^{x}$
$f(x)=e^{x} \sin ^{-1}\left(e^{x}\right)+\sqrt{1-e^{2 x}}+c$
Substituting $(0,0)$ to determine the c value
$f(0)=e^{0} \sin ^{-1}\left(e^{0}\right)+\sqrt{1-e^{0}}+c$
$0=\frac{\pi}{2}+c \Rightarrow \boldsymbol{c}=-\frac{\pi}{2}$
$f(x)=e^{x} \sin ^{-1}\left(e^{x}\right)+\sqrt{1-e^{2 x}}-\frac{\pi}{2}$

- correctly determines the equivalent substitution variable in preparation for using a substitution method of integration [1 mark]
- expresses an integrand in terms of the substitution variable [1 mark]
- determines expressions for u^{\prime} and v in preparation for using the integration by parts rule [1 mark]
- applies the integration by parts rule [1 mark]
- determines a general solution for $f(x)$ [1 mark]
- determines a value of the constant of integration and communicates a solution [1 mark]
- shows logical organisation communicating key steps up to the stage where an integration method using integration by parts is considered [1 mark]

Marking guide

Multiple choice

Paper 2: Technology-active (60 marks)

Question	Response
1	C
2	A
3	C
4	D
5	C
6	C
7	B
8	B
9	A
10	

Short response

Q Sample response
11a) $\boldsymbol{w}=\frac{b-a}{n}=\frac{6}{4}=1.5$

Considering values in Quadrant 1:
$\frac{(x-2)^{2}}{16}+\frac{y^{2}}{9}=1 \Rightarrow y=\sqrt{9\left(1-\frac{(x-2)^{2}}{16}\right)}$
Table of values:

x	\boldsymbol{y}
0	2.598
1.5	2.976
3	2.905
4.5	2.342
6	0

Determining the area in the upper half of the ellipse $A \approx \frac{w}{3}\left[f\left(x_{0}\right)+4\left[f\left(x_{1}\right)+f\left(x_{3}\right)+\cdots\right]\right.$

$$
\left.+2\left[f\left(x_{2}\right)+f\left(x_{4}\right)+\cdots\right]+f\left(x_{n}\right)\right]
$$

$$
\approx \frac{1.5}{3}(2.598+0+4(2.976+2.342)+2 \times 2.905)
$$

$$
\approx 14.84 \mathrm{~km}^{2}
$$

Using symmetry of the ellipse
Required area $\approx 2 \times 14.84$
$\approx 29.68 \mathrm{~km}^{2}$

The response

- correctly determines the width of each interval [1 mark]
- correctly determines the 5 required y-values [1 mark]
- substitutes y-values into Simpson's rule [1 mark]
- determines an approximate area [1 mark]

Q	Sample response	The response
11b)	$\text { Area }=2 \int_{0}^{6} \sqrt{9\left(1-\frac{(x-2)^{2}}{16}\right)} d x$	- uses a suitable mathematical representation to communicate the approach [1 mark]
	Using integration facility of GDC, Area $\approx \mathbf{3 0 . 3 2} \mathrm{km}^{2}$ The approximation is reasonable as the error is only around 2%.	- determines area and evaluates the reasonableness of the approximation [1 mark]

Q	Sample response	The response
12a)	Initial population matrix $=\mathrm{N}_{1}=\left[\begin{array}{c}150 \\ 101 \\ 84 \\ 62\end{array}\right]$	- correctly states the initial population matrix [1 mark]
12b)	Leslie matrix $=\mathrm{L}=\left[\begin{array}{cccc}0.4 & 0.7 & 0.5 & 0.1 \\ 0.6 & 0 & 0 & 0 \\ 0 & 0.3 & 0 & 0 \\ 0 & 0 & 0.2 & 0\end{array}\right]$	- correctly determines the Leslie matrix [1 mark]
12c)	Consider the population in Year 20 Using matrix facility of GDC $\begin{aligned} \mathrm{N}_{\mathbf{2 0}} & =\mathrm{L}^{19} \mathrm{~N}_{1} \\ & \approx\left[\begin{array}{c} 62.7 \\ 39.7 \\ 12.6 \\ 2.7 \end{array}\right] \end{aligned}$ Female population in Year $20 \approx \mathbf{1 1 9}$ The female population is less than 125 within the 20 -year period so the species is considered to be endangered.	- calculates a matrix representing the female population within a 20 -year period [1 mark] - calculates female population for a year within a 20-year period [1 mark] - makes a suitable decision whether the species is considered endangered [1 mark]

Q	Sample response	The response
13a)	As $n \geq 30$, the sample mean distribution can be assumed to be normal. $\mu_{\bar{X}}=64800, \boldsymbol{\sigma}_{\bar{X}}=\frac{4500}{\sqrt{360}}$	
P(64000 $\leq \bar{X} \leq 65000)=0.8$	- correctly calculates $\sigma_{\bar{X}}$ [1 mark]	

Q	Sample response	The response
14a)	$\begin{aligned} & \frac{d v}{d t}=-\left(4+v^{2}\right) \\ & \frac{1}{4+v^{2}} \frac{d v}{d t}=-1 \\ & \int \frac{1}{4+v^{2}} d v=\int-1 d t \\ & \frac{1}{2} \int \frac{2}{4+v^{2}} d v=\int-1 d t \\ & \frac{1}{2} \tan ^{-1}\left(\frac{v}{2}\right) \\ & =-t+c \end{aligned}$	- correctly establishes a suitable integration result based on the separation of variables technique [1 mark] - determines one side of the general solution in terms of v [1 mark] - determines the other side of the general solution in terms of t [1 mark]
14b)	Given $v(0)=1.5$ $\begin{aligned} & \frac{1}{2} \tan ^{-1}\left(\frac{1.5}{2}\right)=c \\ & c \approx 0.32 \end{aligned}$ When $v=0$: $\begin{aligned} & \frac{1}{2} \tan ^{-1}(0) \approx-t+0.32 \\ & t \approx 0.32 \mathrm{~s} \end{aligned}$ The particle comes to rest after 0.32 s .	- determines an expression that represents the integration constant [1 mark] - determines the time when the particle is at rest [1 mark]

Q	Sample response	The response
15a)	$\overrightarrow{A B}=\left(\begin{array}{l} 1 \\ 1 \\ 6 \end{array}\right)-\left(\begin{array}{c} 3 \\ -1 \\ 3 \end{array}\right)=\left(\begin{array}{c} -2 \\ 2 \\ 3 \end{array}\right)$	- correctly determines $\overrightarrow{A B}$ [1 mark]
15b)	Cartesian equation of the line is $\frac{x-3}{-2}=\frac{y+1}{2}=\frac{z-3}{3}$	- correctly substitutes the coordinates of A into the numerator of the equation [1 mark] - substitutes direction vector of the line into the denominator [1 mark]
15c)	From above, normal of the plane is $\left(\begin{array}{c}-2 \\ 2 \\ 3\end{array}\right)$ Equation of plane using point A $\left(\begin{array}{l} x \\ y \\ z \end{array}\right) \cdot\left(\begin{array}{c} -2 \\ 2 \\ 3 \end{array}\right)=\left(\begin{array}{c} 3 \\ -1 \\ 3 \end{array}\right) \cdot\left(\begin{array}{c} -2 \\ 2 \\ 3 \end{array}\right)$ $-2 x+2 y+3 z=1$	- substitutes values into a suitable mathematical rule that represents an equation of the plane [1 mark] - determines a Cartesian equation of the plane [1 mark]

Q Sample response

Q	Sample response	The response
17	Consider the sample: $\begin{aligned} & \bar{x}=5206 \mathrm{~kg} \\ & s=356 \mathrm{~kg} \end{aligned}$ For a $90 \% \mathrm{CI}, z=1.645$ Given the 90% CI is $(5159.1,5252.9) \mathrm{kg}$ Lower value of the $\mathrm{CI}=\bar{x}+z \frac{s}{\sqrt{n}}$ $5159.1=5206-1.645 \times \frac{356}{\sqrt{n}}$ Using solve facility of GDC $n \approx 155.9$ Sample size is 156 Determining a $99 \% \mathrm{Cl}$ for this sample Using statistics facility of GDC CI is $(5132.6,5279.4) \mathrm{kg}$	- correctly determines the required value of z for a 90\% CI [1 mark] - establishes an equation in terms of n [1 mark] - solves the equation to determine n [1 mark] - rounds n to an integer value [1 mark] - determines a 99\% confidence interval [1 mark] - shows logical organisation communicating key steps [1 mark]

Q Sample response
$18 \quad P(z)=z^{3}+(i-a) z^{2}-2 b i z+3 i$
Using the remainder theorem
$P(2 i)=a-b i$
By substitution
$P(2 i)=(2 i)^{3}+(i-a)(2 i)^{2}-2 b i(2 i)+3 i$
$=-8 i-4(i-a)+4 b+3 i$
$=-8 i-4 i+4 a+4 b+3 i$
$=4 a+4 b-9 i$
Equating parts:
$a=4 a+4 b$
$-b=-9$
So $a=-12$ and $b=9$
$\therefore P(z)=z^{3}+(i+12) z^{2}-18 i z+3 i$
$P(a-b i)=P(-12-9 i) \approx 1566-285 i$

Since $P(-12-9 i) \neq 0$, it is not reasonable that $(z-(a-b i))$ is a factor of $P(z)$.

The response

- correctly determines an expression for $P(2 i)$ using the remainder theorem [1 mark]
- correctly determines an expression for $P(2 i)$ using substitution into $P(z)$ [1 mark]
- forms two simultaneous equations by equating parts [1 mark]
- determines $P(a-b i)$ using the values for a and b [1 mark]
- evaluates the reasonableness of the statement using mathematical reasoning [1 mark]

19 Method 1 - Considers a differential equation in terms of v and x and assumes the origin is at the point of release.
Assume downwards as the positive direction
$a=9.8-0.1 v$
$v \frac{d v}{d x}=9.8-0.1 v$
$\int \frac{v}{9.8-0.1 v} d v=\int d x$
$\int \frac{v}{v-98} d v=\int \frac{-1}{10} d x$
$\int 1+\frac{98}{v-98} d v=\int \frac{-1}{10} d x$
$v+98 \ln |v-98|=\frac{-x}{10}+c$

Assume the origin is at the point of release. Given $v(0)=0 \Rightarrow c=98 \ln (98)$
$v+98 \ln |v-98|=\frac{-x}{10}+98 \ln (98)$
Let the distance to the ocean surface be h metres Consider time of drop for each required velocity
When $v=20 \mathrm{~m} \mathrm{~s}^{-1}, x=h$
$20+98 \ln |-78|=\frac{-h}{10}+98 \ln (98)$
$h=23.7 \mathrm{~m}$
When $v=50 \mathrm{~m} \mathrm{~s}^{-1}, x=h$
$50+98 \ln |-48|=98 \ln (98)-\frac{h}{10}$
$h=199.5 \mathrm{~m}$
The range of the drone's flying height above the ocean surface should be between 23.7 m and 199.5 m.

- correctly establishes a differential equation in terms of v and x [1 mark]
- determines general solution of the differential equation [1 mark]
- determines value for the constant [1 mark]
- determines model for the velocity in terms of displacement [1 mark]
- determines displacement of the drop for the minimum acceptable speed [1 mark]
- determines displacement of the drop for the maximum acceptable speed [1 mark]
- communicates range of the drone's flying height including units [1 mark]

19 Method 2 - Considers a differential equation in terms of v and x and assumes the origin is at the ocean surface.
Assume downwards as the positive direction

$$
a=9.8-0.1 v
$$

$$
\begin{aligned}
& v \frac{d v}{d x}=9.8-0.1 v \\
& \int \frac{v}{9.8-0.1 v} d v=\int 1 d x \\
& \int \frac{v}{v-98} d v=\int \frac{-1}{10} d x \\
& \int 1+\frac{98}{v-98} d v=\int \frac{-1}{10} d x \\
& v+98 \ln |v-98|=\frac{-x}{10}+c
\end{aligned}
$$

Assume the origin is the point directly below the drone on the ocean surface and let the height of release be h metres above the origin.
Given $v(h)=0 \Rightarrow c=98 \ln (98)+\frac{h}{10}$
$v+98 \ln |v-98|=\frac{-x}{10}+98 \ln (98)+\frac{h}{10}$
Consider time of drop for each required velocity
When $v=20 \mathrm{~m} \mathrm{~s}^{-1}, x=0$
$20+98 \ln |-78|=98 \ln (98)+\frac{h}{10}$
$h=-23.7 \mathrm{~m}$
When $v=50 \mathrm{~m} \mathrm{~s}^{-1}, x=0$
$50+98 \ln |-48|=98 \ln (98)+\frac{h}{10}$
$h=-199.5 \mathrm{~m}$

The range of the drone's flying height above the ocean surface should be between 23.7 m and 199.5 m.

- correctly establishes a differential equation in terms of v and x [1 mark]
- determines a general solution of the differential equation [1 mark]
- determines a value for the constant [1 mark]
- determines a model for the velocity in terms of its displacement and initial height [1 mark]
- determines displacement of the drop for the minimum acceptable speed [1 mark]
- determines displacement of the drop for the maximum acceptable speed [1 mark]
- communicates range of the drone's flying height including units [1 mark]

19 Method 3 - Considers a differential equation in
terms of v and t and assumes release time at $t=0$.
Assume downwards as the positive direction
$a=9.8-0.1 v$
$\frac{d v}{d t}=9.8-0.1 v$
$\int \frac{d v}{9.8-0.1 v}=\int d t$
$\frac{\ln (9.8-0.1 v)}{-0.1}=t+c$
$9.8-0.1 v=A e^{-0.1 t}$
$v=10\left(9.8-A e^{0.1 t}\right)$
Given $v(0)=0 \Rightarrow A=9.8$
$\therefore v=98\left(1-e^{-0.1 t}\right)$
Consider time of drop for each required velocity
When $v=20 \mathrm{~m} \mathrm{~s}^{-1}$ and $v=50 \mathrm{~m} \mathrm{~s}^{-1}$
$20=98\left(1-e^{-0.1 t}\right)$ and $50=98\left(1-e^{-0.1 t}\right)$
Using solve facility of GDC
$t=2.283 \mathrm{~s}$ and $t=7.138 \mathrm{~s}$
Determining the change in displacement of drop using calculus facility of GDC:
$v=20 \mathrm{~m} \mathrm{~s}^{-1}, \Delta x=\int_{0}^{2.283} 98\left(1-e^{-0.1 t}\right) d t \approx 23.7 \mathrm{~m}$
$v=50 \mathrm{~m} \mathrm{~s}^{-1}, \Delta x=\int_{0}^{7.138} 98\left(1-e^{-0.1 t}\right) d t \approx 199.5 \mathrm{~m}$
The range of the drone's flying height above the ocean surface should be between 23.7 m and 199.5 m.

- correctly establishes a differential equation in terms of v and t [1 mark]
- determines a general solution of the differential equation [1 mark]
- determines a model for the velocity using the initial boundary condition [1 mark]
- uses this model to determine the time of the drop for both the minimum and maximum acceptable speeds [1 mark]
- determines displacement of the drop for the minimum acceptable speed [1 mark]
- determines displacement of the drop for the maximum acceptable speed [1 mark]
- communicates range of the drone's flying height including units [1 mark]
© State of Queensland (QCAA) 2022
Licence: https://creativecommons.org/licenses/by/4.0 | Copyright notice: www.qcaa.qld.edu.au/copyright — lists the full terms and conditions, which specify certain exceptions to the licence. | Attribution: © State of Queensland (QCAA) 2022

