Specialist Mathematics v1.2

Mensuration

circumference of a circle	$C=2 \pi r$	area of a circle	$A=\pi r^{2}$
area of a parallelogram	$A=b h$	area of a trapezium	$A=\frac{1}{2}(a+b) h$
area of a triangle	$A=\frac{1}{2} b h$	total surface area of a cone	$S=\pi r s+\pi r^{2}$
total surface area of a cylinder	$S=2 \pi r h+2 \pi r^{2}$	surface area of a sphere	$S=4 \pi r^{2}$
volume of a cone	$V=\frac{1}{3} \pi r^{2} h$	volume of a cylinder	$V=\pi r^{2} h$
volume of a prism	$V=A h$	volume of a pyramid	$V=\frac{1}{3} A h$
volume of a sphere	$V=\frac{4}{3} \pi r^{3}$		

Calculus

$\frac{d}{d x} x^{n}=n x^{n-1}$	$\int x^{n} d x=\frac{x^{n+1}}{n+1}+c$
$\frac{d}{d x} e^{x}=e^{x}$	$\int e^{x} d x=e^{x}+c$
$\frac{d}{d x} \ln (x)=\frac{1}{x}$	$\int \frac{1}{x} d x=\ln \|x\|+c$
$\frac{d}{d x} \sin (x)=\cos (x)$	$\int \sin (x) d x=-\cos (x)+c$
$\frac{d}{d x} \cos (x)=-\sin (x)$	$\int \cos (x) d x=\sin (x)+c$
$\frac{d}{d x} \tan ^{2}(x)=\sec (x) d x=\tan (x)+c$	
$\frac{d}{d x} \sin ^{-1}\left(\frac{x}{a}\right)=\frac{1}{\sqrt{a^{2}-x^{2}}}$	$\int \frac{1}{\sqrt{a^{2}-x^{2}}} d x=\sin ^{-1}\left(\frac{x}{a}\right)+c$
$\frac{d}{d x} \cos ^{-1}\left(\frac{x}{a}\right)=\frac{-1}{\sqrt{a^{2}-x^{2}}}$	$\int \frac{-1}{\sqrt{a^{2}-x^{2}}} d x=\cos ^{-1}\left(\frac{x}{a}\right)+c$
$\frac{d}{d x} \tan ^{-1}\left(\frac{x}{a}\right)=\frac{a}{a^{2}+x^{2}}$	$\int \frac{a}{a^{2}+x^{2}} d x=\tan ^{-1}\left(\frac{x}{a}\right)+c$

Calculus		
chain rule	If $\quad h(x)=f(g(x))$ then $h^{\prime}(x)=f^{\prime}(g(x)) g^{\prime}(x)$	If $\quad y=f(u)$ and $u=g(x)$ then $\frac{d y}{d x}=\frac{d y}{d u} \times \frac{d u}{d x}$
product rule	If $\quad h(x)=f(x) g(x)$ then $h^{\prime}(x)=f(x) g^{\prime}(x)+f^{\prime}(x) g(x)$	$\frac{d}{d x}(u v)=u \frac{d v}{d x}+v \frac{d u}{d x}$
quotient rule	If $\quad h(x)=\frac{f(x)}{g(x)}$ then $h^{\prime}(x)=\frac{f^{\prime}(x) g(x)-f(x) g^{\prime}(x)}{(g(x))^{2}}$	$\frac{d}{d x}\left(\frac{u}{v}\right)=\frac{v \frac{d u}{d x}-u \frac{d v}{d x}}{v^{2}}$
integration by parts	$\int f(x) g^{\prime}(x) d x=f(x) g(x)-\int f^{\prime}(x) g(x) d x$	$\int u \frac{d v}{d x} d x=u v-\int v \frac{d u}{d x} d x$
volume of a solid of revolution	about the x-axis	$V=\pi \int_{a}^{b}[f(x)]^{2} d x$
	about the y-axis	$V=\pi \int_{a}^{b}[f(y)]^{2} d y$
Simpson's rule	$\int_{a}^{b} f(x) d x \approx \frac{w}{3}\left[f\left(x_{0}\right)+4\left[f\left(x_{1}\right)+f\left(x_{3}\right)+\cdots\right]+2\left[f\left(x_{2}\right)+f\left(x_{4}\right)+\cdots\right]+f\left(x_{n}\right)\right]$	
simple harmonic motion	If $\frac{d^{2} x}{d t^{2}}=-\omega^{2} x$ then $x=A \sin (\omega t+\alpha)$ or $x=A \cos (\omega t+\beta)$	
	$\begin{array}{l\|l} v^{2}=\omega^{2}\left(A^{2}-x^{2}\right) & T=\frac{2 \pi}{\omega} \end{array}$	$f=\frac{1}{T}$
acceleration	$a=\frac{d v}{d t}=\frac{d^{2} x}{d t^{2}}=v \frac{d v}{d x}=\frac{d}{d x}\left(\frac{1}{2} v^{2}\right)$	

Real and complex numbers

complex number forms	$z=x+y i=r(\cos (\theta)+i \sin (\theta))=r \operatorname{cis}(\theta)$
modulus	$\|z\|=r=\sqrt{x^{2}+y^{2}}$
argument	$\arg (z)=\theta, \tan (\theta)=\frac{y}{x},-\pi<\theta \leq \pi$
product	$z_{1} z_{2}=r_{1} r_{2} \operatorname{cis}\left(\theta_{1}+\theta_{2}\right)$
quotient	$\frac{z_{1}}{z_{2}}=\frac{r_{1}}{r_{2}} \operatorname{cis}\left(\theta_{1}-\theta_{2}\right)$
De Moivre's theorem	$z^{n}=r^{n} \operatorname{cis}(n \theta)$

Statistics	
binomial theorem	$(x+y)^{n}=x^{n}+\binom{n}{1} x^{n-1} y+\cdots+\binom{n}{r} x^{n-r} y^{r}+\cdots+y^{n}$
permutation	${ }^{n} P_{r}=\frac{n!}{(n-r)!}=n \times(n-1) \times(n-2) \times \cdots \times(n-r+1)$
combination	${ }^{n} C_{r}=\binom{n}{r}=\frac{n!}{r!(n-r)!}$
sample means	mean
	standard deviation

Trigonometry	
Pythagorean identities	$\begin{aligned} & \sin ^{2}(A)+\cos ^{2}(A)=1 \\ & \tan ^{2}(A)+1=\sec ^{2}(A) \\ & \cot ^{2}(A)+1=\operatorname{cosec}^{2}(A) \end{aligned}$
angle sum and difference identities	$\begin{aligned} & \sin (A+B)=\sin (A) \cos (B)+\cos (A) \sin (B) \\ & \sin (A-B)=\sin (A) \cos (B)-\cos (A) \sin (B) \\ & \cos (A+B)=\cos (A) \cos (B)-\sin (A) \sin (B) \\ & \cos (A-B)=\cos (A) \cos (B)+\sin (A) \sin (B) \end{aligned}$
double-angle identities	$\begin{aligned} \sin (2 A) & =2 \sin (A) \cos (A) \\ \cos (2 A) & =\cos ^{2}(A)-\sin ^{2}(A) \\ & =1-2 \sin ^{2}(A) \\ & =2 \cos ^{2}(A)-1 \end{aligned}$
product identities	$\begin{aligned} & \sin (A) \sin (B)=\frac{1}{2}(\cos (A-B)-\cos (A+B)) \\ & \cos (A) \cos (B)=\frac{1}{2}(\cos (A-B)+\cos (A+B)) \\ & \sin (A) \cos (B)=\frac{1}{2}(\sin (A+B)+\sin (A-B)) \\ & \cos (A) \sin (B)=\frac{1}{2}(\sin (A+B)-\sin (A-B)) \end{aligned}$

Vectors and matrices			
magnitude	$\|\boldsymbol{a}\|=\left\|\left(\begin{array}{l}a_{1} \\ a_{2} \\ a_{3}\end{array}\right)\right\|=\sqrt{a_{1}^{2}+a_{2}^{2}+a_{3}^{2}}$		
scalar (dot) product	$\boldsymbol{a} \cdot \boldsymbol{b}=\|\boldsymbol{a} \\| \boldsymbol{b}\| \cos (\theta)$		
	$\boldsymbol{a} \cdot \boldsymbol{b}=\left(\begin{array}{l}a_{1} \\ a_{2} \\ a_{3}\end{array}\right) \cdot\left(\begin{array}{l}b_{1} \\ b_{2} \\ b_{3}\end{array}\right)=a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3}$		
vector equation of a line	$\boldsymbol{r}=\boldsymbol{a}+k \boldsymbol{d}$		
Cartesian equation of a line	$\frac{x-a_{1}}{d_{1}}=\frac{y-a_{2}}{d_{2}}=\frac{z-a_{3}}{d_{3}}$		
vector (cross) product	$\boldsymbol{a} \times \boldsymbol{b}=\|\boldsymbol{a} \\| \boldsymbol{b}\| \sin (\theta) \hat{\boldsymbol{n}}$		
	$\boldsymbol{a} \times \boldsymbol{b}=\left(\begin{array}{l}a_{1} \\ a_{2} \\ a_{3}\end{array}\right) \times\left(\begin{array}{l}b_{1} \\ b_{2} \\ b_{3}\end{array}\right)=\left(\begin{array}{l}a_{2} b_{3}-a_{3} b_{2} \\ a_{3} b_{1}-a_{1} b_{3} \\ a_{1} b_{2}-a_{2} b_{1}\end{array}\right)$		
vector projection	\boldsymbol{a} on $\boldsymbol{b}=\|\boldsymbol{a}\| \cos (\theta) \hat{\boldsymbol{b}}=(\boldsymbol{a} \cdot \hat{\boldsymbol{b}}) \hat{\boldsymbol{b}}$		
vector equation of a plane	$\boldsymbol{r} \cdot \boldsymbol{n}=\boldsymbol{a} \cdot \boldsymbol{n}$		
Cartesian equation of a plane	$a x+b y+c z+d=0$		
determinant	If $\mathbf{A}=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ then $\operatorname{det}(\mathbf{A})=a d-b c$		
multiplicative inverse matrix	$\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]^{-1}=\frac{1}{\operatorname{det}(\mathbf{A})}\left[\begin{array}{cc}d & -b \\ -c & a\end{array}\right], \operatorname{det}(\mathbf{A}) \neq 0$		
linear transformations	dilation	$\left[\begin{array}{ll}a & 0 \\ 0 & b\end{array}\right]$	
	rotation	$\left[\begin{array}{cc}\cos (\theta) & -\sin (\theta) \\ \sin (\theta) & \cos (\theta)\end{array}\right]$	
	reflection (in the line $y=x \tan (\theta)$)	$\left[\begin{array}{cc}\cos (2 \theta) & \sin (2 \theta) \\ \sin (2 \theta) & -\cos (2 \theta)\end{array}\right]$	

Physical constant

magnitude of mean acceleration due to gravity on Earth

$$
g=9.8 \mathrm{~m} \mathrm{~s}^{-2}
$$

