Formula book

Specialist Mathematics v1.2

Mensuration			
circumference of a circle	$C = 2\pi r$	area of a circle	$A = \pi r^2$
area of a parallelogram	A = bh	area of a trapezium	$A = \frac{1}{2}(a+b)h$
area of a triangle	$A = \frac{1}{2}bh$	total surface area of a cone	$S = \pi r s + \pi r^2$
total surface area of a cylinder	$S = 2\pi rh + 2\pi r^2$	surface area of a sphere	$S = 4\pi r^2$
volume of a cone	$V = \frac{1}{3}\pi r^2 h$	volume of a cylinder	$V = \pi r^2 h$
volume of a prism	V = Ah	volume of a pyramid	$V = \frac{1}{3}Ah$
volume of a sphere	$V = \frac{4}{3}\pi r^3$		

Calculus	
$\frac{d}{dx}x^n = nx^{n-1}$	$\int x^n dx = \frac{x^{n+1}}{n+1} + c$
$\frac{d}{dx}e^x = e^x$	$\int e^x dx = e^x + c$
$\frac{d}{dx}\ln(x) = \frac{1}{x}$	$\int \frac{1}{x} dx = \ln x + c$
$\frac{d}{dx}\sin(x) = \cos(x)$	$\int \sin(x) dx = -\cos(x) + c$
$\frac{d}{dx}\cos(x) = -\sin(x)$	$\int \cos(x) dx = \sin(x) + c$
$\frac{d}{dx}\tan\left(x\right) = \sec^2\left(x\right)$	$\int \sec^2(x) dx = \tan(x) + c$
$\frac{d}{dx}\sin^{-1}\left(\frac{x}{a}\right) = \frac{1}{\sqrt{a^2 - x^2}}$	$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \sin^{-1} \left(\frac{x}{a}\right) + c$
$\frac{d}{dx}\cos^{-1}\left(\frac{x}{a}\right) = \frac{-1}{\sqrt{a^2 - x^2}}$	$\int \frac{-1}{\sqrt{a^2 - x^2}} dx = \cos^{-1} \left(\frac{x}{a}\right) + c$
$\frac{d}{dx}\tan^{-1}\left(\frac{x}{a}\right) = \frac{a}{a^2 + x^2}$	$\int \frac{a}{a^2 + x^2} dx = \tan^{-1} \left(\frac{x}{a}\right) + c$

Calculus			
chain rule	If $h(x) = f(g(x))$ then $h'(x) = f'(g(x))g'(x)$	If $y = f(u)$ and $u = g(x)$ then $\frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx}$	
product rule	If $h(x) = f(x)g(x)$ then $h'(x) = f(x)g'(x) + f'(x)g(x)$	$\frac{d}{dx}(uv) = u\frac{dv}{dx} + v\frac{du}{dx}$	
quotient rule	If $h(x) = \frac{f(x)}{g(x)}$ then $h'(x) = \frac{f'(x)g(x) - f(x)g'(x)}{(g(x))^2}$	$\frac{d}{dx}\left(\frac{u}{v}\right) = \frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^2}$	
integration by parts	$\int f(x)g'(x)dx = f(x)g(x) - \int f'(x)g(x)dx$	$\int u \frac{dv}{dx} dx = uv - \int v \frac{du}{dx} dx$	
volume of a solid of revolutionabout the x -axisabout the y -axis	about the <i>x</i> -axis	$V = \pi \int_{a}^{b} \left[f(x) \right]^{2} dx$	
	about the y-axis	$V = \pi \int_{a}^{b} \left[f(y) \right]^{2} dy$	
Simpson's rule	$\int_{a}^{b} f(x)dx \approx \frac{w}{3} \Big[f(x_{0}) + 4 \Big[f(x_{1}) + f(x_{3}) + \cdots \Big] + 2 \Big[f(x_{2}) + f(x_{4}) + \cdots \Big] + f(x_{n}) \Big]$		
simple harmonic	If $\frac{d^2x}{dt^2} = -\omega^2 x$ then $x = A\sin(\omega t + \alpha)$ or $x = A\cos(\omega t + \beta)$		
motion	$v^2 = \omega^2 \left(A^2 - x^2 \right) \qquad T = \frac{2\pi}{\omega}$	$f = \frac{1}{T}$	
acceleration	$a = \frac{dv}{dt} = \frac{d^2x}{dt^2} = v\frac{dv}{dx} = \frac{d}{dx}\left(\frac{1}{2}v^2\right)$		

Real and complex numbers		
complex number forms	$z = x + yi = r(\cos(\theta) + i\sin(\theta)) = r\operatorname{cis}(\theta)$	
modulus	$ z = r = \sqrt{x^2 + y^2}$	
argument	$arg(z) = \theta, tan(\theta) = \frac{y}{x}, -\pi < \theta \le \pi$	
product	$z_1 z_2 = r_1 r_2 \operatorname{cis}(\theta_1 + \theta_2)$	
quotient	$\frac{z_1}{z_2} = \frac{r_1}{r_2} \operatorname{cis}(\theta_1 - \theta_2)$	
De Moivre's theorem	$z^n = r^n \mathrm{cis}(n\theta)$	

Statistics			
binomial theorem	$(x+y)^n = x^n + \binom{n}{1}x^{n-1}y + \dots + \binom{n}{r}x^{n-r}y^r + \dots + y^n$		
permutation	${}^{n}P_{r} = \frac{n!}{(n-r)!} = n \times (n-r)$	$(n-1)\times(n-2)\times\cdots\times(n-r+1)$	
combination	${}^{n}C_{r} = {n \choose r} = \frac{n!}{r!(n-r)!}$		
	mean	μ	
sample means	standard deviation	$\frac{\sigma}{\sqrt{n}}$	
approximate confidence interval for μ	$\left(\overline{x} - z \frac{s}{\sqrt{n}}, \overline{x} + z \frac{s}{\sqrt{n}}\right)$		

Trigonometry	
	$\sin^2(A) + \cos^2(A) = 1$
Pythagorean identities	$ \tan^2(A) + 1 = \sec^2(A) $
	$\cot^2(A) + 1 = \csc^2(A)$
	$\sin(A+B) = \sin(A)\cos(B) + \cos(A)\sin(B)$
angle sum and	$\sin(A-B) = \sin(A)\cos(B) - \cos(A)\sin(B)$
difference identities	$\cos(A+B) = \cos(A)\cos(B) - \sin(A)\sin(B)$
	$\cos(A-B) = \cos(A)\cos(B) + \sin(A)\sin(B)$
	$\sin(2A) = 2\sin(A)\cos(A)$
double angle identities	$\cos(2A) = \cos^2(A) - \sin^2(A)$
double-angle identities	$=1-2\sin^2(A)$
	$=2\cos^2(A)-1$
	$\sin(A)\sin(B) = \frac{1}{2}(\cos(A-B) - \cos(A+B))$
product identities	$\cos(A)\cos(B) = \frac{1}{2}(\cos(A-B) + \cos(A+B))$
	$\sin(A)\cos(B) = \frac{1}{2}(\sin(A+B) + \sin(A-B))$
	$\cos(A)\sin(B) = \frac{1}{2}(\sin(A+B) - \sin(A-B))$

Vectors and matrices			
magnitude	$ \mathbf{a} = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} = \sqrt{a_1^2 + a_2^2 + a_3^2}$		
	$\mathbf{a} \cdot \mathbf{b} = \mathbf{a} \mathbf{b} \cos(\theta)$		
scalar (dot) product	$\boldsymbol{a} \cdot \boldsymbol{b} = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} \cdot \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix} = a_1 b_1 + a_2 b_2 + a_3 b_3$		
vector equation of a line	r = a + kd		
Cartesian equation of a line	$\frac{x - a_1}{d_1} = \frac{y - a_2}{d_2} = \frac{z - a_3}{d_3}$		
	$\mathbf{a} \times \mathbf{b} = \mathbf{a} \mathbf{b} \sin(\theta)\hat{\mathbf{n}}$		
vector (cross) product	$\boldsymbol{a} \times \boldsymbol{b} = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} \times \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix} = \begin{pmatrix} a_2b_3 - a_3b_2 \\ a_3b_1 - a_1b_3 \\ a_1b_2 - a_2b_1 \end{pmatrix}$		
vector projection	$\boldsymbol{a} \text{ on } \boldsymbol{b} = \boldsymbol{a} \cos(\theta) \hat{\boldsymbol{b}} = (\boldsymbol{a} \cdot \hat{\boldsymbol{b}}) \hat{\boldsymbol{b}}$		
vector equation of a plane	$r \cdot n = a \cdot n$		
Cartesian equation of a plane	ax + by + cz + d = 0		
determinant	If $\mathbf{A} = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ then $\det(\mathbf{A}) = ad - bc$		
multiplicative inverse matrix	$\begin{bmatrix} a & b \\ c & d \end{bmatrix}^{-1} = \frac{1}{\det(\mathbf{A})} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}, \det(\mathbf{A}) \neq 0$		
	dilation	$\begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix}$	
linear transformations	rotation	$\begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix}$	
	reflection (in the line $y = x \tan(\theta)$)	$\begin{bmatrix} \cos(2\theta) & \sin(2\theta) \\ \sin(2\theta) & -\cos(2\theta) \end{bmatrix}$	

Physical constant	
magnitude of mean acceleration due to gravity on Earth	$g = 9.8 \mathrm{m s^{-2}}$

THIS PAGE IS INTENTIONALLY BLANK

THIS PAGE IS INTENTIONALLY BLANK