	•
LUI	School code
School name	
Given name/s	Attach your
Family name	barcode ID label here
External assessment 2021	Book of books used
	Question and response book

Specialist Mathematics

Paper 1 — Technology-free

Time allowed

- Perusal time 5 minutes
- Working time 90 minutes

General instructions

- Answer all questions in this question and response book.
- Calculators are **not** permitted.
- QCAA formula book provided.
- Planning paper will not be marked.

Section 1 (10 marks)

• 10 multiple choice questions

Section 2 (55 marks)

• 9 short response questions

DO NOT WRITE ON THIS PAGE

THIS PAGE WILL NOT BE MARKED

Section 1

Instructions

- Choose the best answer for Questions 1–10.
- This section has 10 questions and is worth 10 marks.
- Use a 2B pencil to fill in the A, B, C or D answer bubble completely.
- If you change your mind or make a mistake, use an eraser to remove your response and fill in the new answer bubble completely.

	А	В	С	D
Example:		\bigcirc	\bigcirc	\bigcirc

	А	В	С	D
1.	\bigcirc	\bigcirc	\bigcirc	\bigcirc
2.	\bigcirc	\bigcirc	\bigcirc	\bigcirc
3.	\bigcirc	\bigcirc	\bigcirc	\bigcirc
4.	\bigcirc	\bigcirc	\bigcirc	\bigcirc
5.	\bigcirc	\bigcirc	\bigcirc	\bigcirc
6.	\bigcirc	\bigcirc	\bigcirc	\bigcirc
7.	\bigcirc	\bigcirc	\bigcirc	\bigcirc
8.	\bigcirc	\bigcirc	\bigcirc	\bigcirc
9.	\bigcirc	\bigcirc	\bigcirc	\bigcirc
10.	\bigcirc	\bigcirc	\bigcirc	\bigcirc

Section 2

Instructions

- Write using black or blue pen.
- Questions worth more than one mark require mathematical reasoning and/or working to be shown to support answers.
- If you need more space for a response, use the additional pages at the back of this book.
 - On the additional pages, write the question number you are responding to.
 - Cancel any incorrect response by ruling a single diagonal line through your work.
 - Write the page number of your alternative/additional response, i.e. See page ...
 - If you do not do this, your original response will be marked.
- This section has nine questions and is worth 55 marks.

DO NOT WRITE ON THIS PAGE

THIS PAGE WILL NOT BE MARKED

QUESTION 11 (5 marks)						
Let $f(x) = \tan^{-1}\left(\frac{x}{2}\right)$ for suitable values of x where $f(x) \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$.						
a) Determine $f(2)$.	[1 mark]					
b) Determine $f'(2)$.	[2 marks]					
c) Use the results from Questions 11a) and 11b) to determine the equation of the tangent						
to the graph of $y = f(x)$ at $x = 2$.	[2 marks]					

QUESTION 12 (8 marks)

Consider the plane x - y - 2z = 15.

a) Determine a vector **n** that is perpendicular to the plane.

b)	Determine the vector equation of the line <i>l</i> that is perpendicular to the plane and
	contains the point $A(-2, 1, 3)$.

[1 mark]

[1 mark]

c) Use the result from Question 12b) to express the equation of the line *l* in parametric form. [1 mark]

The line *l* and the plane intersect at point S.

d) Show that the coordinates of S are (2, -3, -5).

[3 marks]

e) D	etermine \overrightarrow{AS} .	[1 m
f) U	se a property of parallel vectors to verify that \overrightarrow{AS} and n are parallel.	[1 m

QUESTION 13 (6 marks)

Use z = a + bi and w = c + di, where $a, b, c, d \in R$, to prove

$$|z-w|^{2} = |z|^{2} + |w|^{2} - 2Re(z\overline{w})$$

QUESTION 14 (6 marks)

An object is projected vertically upwards from ground level. After the object has been in motion for *t* seconds, its position vector through the air, in metres, is modelled by

$$\boldsymbol{r}(t) = 5t(8-t)\,\hat{\boldsymbol{j}}$$

a) Determine the velocity of the object through the air, v(t), in metres per second. [2 marks]

b) Determine the number of seconds until the object reaches its maximum height. [2 marks]

c) Determine the maximum height that the object reaches, in metres.

[2 marks]

QUESTION 15 (4 marks)

Use partial fractions to determine $\int \frac{d}{x^2}$	$\frac{4x-17}{2-x-6}$ dx, where $x \in R, x \neq -2, x \neq 3$.
---	--

Express your answer in the form $\ln |f(x)| + c$.

QUESTION 16	(6 marks)
--------------------	-----------

Use mathematical induction to prove that $2^{2n} + 3n - 1$ is divisible by $3 \forall n \in Z^+$.

QUESTION 17 (7 marks)

The area between the graphs of the functions y = 4x and $y = 2x^2$ is rotated about the *y*-axis to form a solid of revolution with a volume of *V* units³.

Determine the exact value of *V*.

QUESTION 18 (6 marks)

This differential equation can be used to determine the current I (amperes) at time t (seconds) with voltage V (volts) in an electric circuit containing a resistance R (ohms):

$$k\frac{dI}{dt} + RI = V$$

where k, R and V are positive constants and $t \ge 0$.

Assuming that there is no current in the electric circuit initially, show that the size of the current can never be greater than $\frac{V}{R}$.

	_

QUESTION 19 (7 marks)

The velocity vectors of two objects A and B (in m s⁻¹) at time t (in s) are given respectively by

$$v_{\rm A} = 6\sin(3t)\hat{i} + 6\cos(3t)\hat{j}$$
$$v_{\rm B} = \cos(t)\hat{i} - \sin(t)\hat{j}$$

Objects A and B are initially at (-2, 0, 2) and (0, 1, -1) respectively. Determine the position of Object A when it is 4 metres away from Object B for the first time.

END OF PAPER	

Write the question number you are respondin	ng to.

ADDITIONAL PAGE FOR STUDENT RESPONSES

Write the question number you are responding to.

ADDITIONAL PAGE FOR STUDENT RESPONSES Write the question number you are responding to.

ADDITIONAL PAGE FOR STUDENT RESPONSES

Write the question number you are responding to.

© State of Queensland (QCAA) 2021 Licence: https://creativecommons.org/licenses/by/4.0 | Copyright notice: www.qcaa.qld.edu.au/copyright — lists the full terms and conditions, which specify certain exceptions to the licence.| Attribution: © State of Queensland (QCAA) 2021