

School name

Given name/s \square

\square of \square books used

Specialist Mathematics

Paper 1 — Technology-free

Time allowed

- Perusal time - 5 minutes
- Working time - 90 minutes

General instructions

- Answer all questions in this question and response book.
- Calculators are not permitted.
- QCAA formula book provided.
- Planning paper will not be marked.

Section 1 (10 marks)

- 10 multiple choice questions

Section 2 (55 marks)

- 9 short response questions

DO NOT WRITE ON THIS PAGE

THIS PAGE WILL NOT BE MARKED

Section 1

Instructions

- Choose the best answer for Questions 1-10.
- This section has 10 questions and is worth 10 marks.
- Use a 2B pencil to fill in the A, B, C or D answer bubble completely.
- If you change your mind or make a mistake, use an eraser to remove your response and fill in the new answer bubble completely.

[^0]
Section 2

Instructions

- Write using black or blue pen.
- Questions worth more than one mark require mathematical reasoning and/or working to be shown to support answers.
- If you need more space for a response, use the additional pages at the back of this book.
- On the additional pages, write the question number you are responding to.
- Cancel any incorrect response by ruling a single diagonal line through your work.
- Write the page number of your alternative/additional response, i.e. See page ...
- If you do not do this, your original response will be marked.
- This section has nine questions and is worth 55 marks.

DO NOT WRITE ON THIS PAGE

THIS PAGE WILL NOT BE MARKED

QUESTION 11 (5 marks)

Let $f(x)=\tan ^{-1}\left(\frac{x}{2}\right)$ for suitable values of x where $f(x) \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$.
a) Determine $f(2)$.
\qquad
\qquad
\qquad
\qquad
b) Determine $f^{\prime}(2)$.
\qquad
\qquad
\qquad
\qquad
c) Use the results from Questions 11a) and 11b) to determine the equation of the tangent to the graph of $y=f(x)$ at $x=2$.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Do not write outside this box.

QUESTION 12 (8 marks)

Consider the plane $x-y-2 z=15$.
a) Determine a vector \boldsymbol{n} that is perpendicular to the plane.
\qquad
\qquad
b) Determine the vector equation of the line l that is perpendicular to the plane and contains the point $\mathrm{A}(-2,1,3)$.
\qquad
\qquad
\qquad
\qquad
c) Use the result from Question 12b) to express the equation of the line l in parametric form. [1 mark]
\qquad
\qquad
\qquad
\qquad

The line l and the plane intersect at point S .
d) Show that the coordinates of S are $(2,-3,-5)$.
\qquad
\qquad
\qquad
\qquad
\qquad

Do not write outside this box.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
e) Determine $\overrightarrow{A S}$.
\qquad
\qquad
\qquad
f) Use a property of parallel vectors to verify that $\overrightarrow{A S}$ and \boldsymbol{n} are parallel.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Do not write outside this box.

QUESTION 13 (6 marks)

Use $z=a+b i$ and $w=c+d i$, where $a, b, c, d \in R$, to prove

$$
|z-w|^{2}=|z|^{2}+|w|^{2}-2 \operatorname{Re}(z \bar{w})
$$

Do not write outside this box.
\qquad

QUESTION 14 (6 marks)

An object is projected vertically upwards from ground level. After the object has been in motion for t seconds, its position vector through the air, in metres, is modelled by

$$
\boldsymbol{r}(t)=5 t(8-t) \hat{\boldsymbol{j}}
$$

a) Determine the velocity of the object through the air, $\boldsymbol{v}(t)$, in metres per second.
\qquad
\qquad
\qquad
\qquad
\qquad
b) Determine the number of seconds until the object reaches its maximum height.
\qquad
\qquad
\qquad
\qquad
\qquad
c) Determine the maximum height that the object reaches, in metres.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Do not write outside this box.

QUESTION 15 (4 marks)

Use partial fractions to determine $\int \frac{4 x-17}{x^{2}-x-6} d x$, where $x \in R, x \neq-2, x \neq 3$.
Express your answer in the form $\ln |f(x)|+c$.
\qquad

Do not write outside this box.

QUESTION 16 (6 marks)

Use mathematical induction to prove that $2^{2 n}+3 n-1$ is divisible by $3 \forall n \in Z^{+}$.
\qquad

Do not write outside this box.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

QUESTION 17 (7 marks)

The area between the graphs of the functions $y=4 x$ and $y=2 x^{2}$ is rotated about the y-axis to form a solid of revolution with a volume of V units 3.

Determine the exact value of V.
\qquad
\qquad (1)
\qquad
\qquad
\qquad
\qquad

Do not write outside this box.
\qquad

QUESTION 18 (6 marks)

This differential equation can be used to determine the current I (amperes) at time t (seconds) with voltage V (volts) in an electric circuit containing a resistance R (ohms):

$$
k \frac{d I}{d t}+R I=V
$$

where k, R and V are positive constants and $t \geq 0$.
Assuming that there is no current in the electric circuit initially, show that the size of the current can never be greater than $\frac{V}{R}$.

Do not write outside this box.
\qquad

QUESTION 19 (7 marks)

The velocity vectors of two objects A and $\mathrm{B}\left(\right.$ in m s $\left.^{-1}\right)$ at time t (in s) are given respectively by

$$
\begin{aligned}
& \boldsymbol{v}_{\mathrm{A}}=6 \sin (3 t) \hat{\boldsymbol{i}}+6 \cos (3 t) \hat{\boldsymbol{j}} \\
& \boldsymbol{v}_{\mathrm{B}}=\cos (t) \hat{\boldsymbol{i}}-\sin (t) \hat{\boldsymbol{j}}
\end{aligned}
$$

Objects A and B are initially at $(-2,0,2)$ and $(0,1,-1)$ respectively. Determine the position of Object A when it is 4 metres away from Object B for the first time.

[^1]\qquad
\qquad

END OF PAPER

Do not write outside this box.

ADDITIONAL PAGE FOR STUDENT RESPONSES

Write the question number you are responding to.
\qquad

Do not write outside this box.

ADDITIONAL PAGE FOR STUDENT RESPONSES

Write the question number you are responding to.
\qquad

Do not write outside this box.

ADDITIONAL PAGE FOR STUDENT RESPONSES

Write the question number you are responding to.
\qquad

Do not write outside this box.

ADDITIONAL PAGE FOR STUDENT RESPONSES

Write the question number you are responding to.
\qquad

Do not write outside this box.
© State of Queensland (QCAA) 2021
Licence: https://creativecommons.org/licenses/by/4.0 | Copyright notice: www.qcaa.qld.edu.au/copyright — lists the full terms and conditions, which specify certain exceptions to the licence.|
Attribution: © State of Queensland (QCAA) 2021

[^0]: Do not write outside this box.

[^1]: Do not write outside this box.

