Formula book

Specialist Mathematics v1.2

Mensuration				
circumference of a circle	$C = 2\pi r$	area of a circle	$A = \pi r^2$	
area of a parallelogram	A = bh	area of a trapezium	$A = \frac{1}{2}(a + b)h$	
area of a triangle	$A = \frac{1}{2}bh$	total surface area of a cone	$S = \pi r s + \pi r^2$	
total surface area of a cylinder	$S = 2\pi r h + 2\pi r^2$	surface area of a sphere	$S = 4\pi r^2$	
volume of a cone	$V = \frac{1}{3}\pi r^2 h$	volume of a cylinder	$V = \pi r^2 h$	
volume of a prism	V = Ah	volume of a pyramid	$V = \frac{1}{3} A h$	
volume of a sphere	$V = \frac{4}{3}\pi r^3$			

Calculus	
$\frac{d}{dx}x^n = nx^{n-1}$	$\int x^n dx = \frac{x^{n+1}}{n+1} + c$
$\frac{d}{dx}e^{x} = e^{x}$	$\int e^{x} dx = e^{x} + c$
$\frac{d}{dx}\ln(x) = \frac{1}{x}$	$\int \frac{1}{x} dx = \ln x + c$
$\frac{d}{dx}\sin(x) = \cos(x)$	$\int \sin(x)dx = -\cos(x) + c$

Calculus (continued)					
$\frac{d}{dx}\cos(x) = -\sin(x)$		$\int \cos(x) dx = \sin(x) + c$			
$\frac{d}{dx}\tan(x) = \sec$	$^{2}(x)$		$\int \sec^2(x)dx$	dx = tan(x) + c	
$\frac{d}{dx}\sin^{-1}\left(\frac{x}{a}\right) = \frac{1}{\sqrt{a}}$	$\frac{1}{a^2-x^2}$		$\int \frac{1}{\sqrt{a^2 - x^2}}$	$-dx = \sin^{-1}\left(\frac{x}{a}\right) + c$	
$\frac{d}{dx}\cos^{-1}\left(\frac{x}{a}\right) = \frac{-1}{\sqrt{a^2 - x^2}}$		$\int \frac{-1}{\sqrt{a^2 - x^2}} dx = \cos^{-1} \left(\frac{x}{a} \right) + c$			
$\frac{d}{dx} \tan^{-1} \left(\frac{x}{a} \right) = \frac{a}{a^2 + x^2}$		$\int \frac{a}{a^2 + x^2} dx = \tan^{-1} \left(\frac{x}{a} \right) + c$			
	If	h(x) = f(g(x))		If $y = f(u)$ and $u = g(x)$	
chain rule	then	h'(x) = f'(g(x))g'(x)		then $\frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx}$	
	If	h(x) = f(x)g(x)		d () dv du	
product rule then $h'(x) = f(x)g'(x)$		$+ f'(x)g(x)$ $\frac{d}{dx}(uv) = u \frac{dv}{dx} + v \frac{du}{dx}$			
If $h(x) = \frac{f(x)}{g(x)}$, du dv			
quotient rule	then	$h'(x) = \frac{f'(x)g(x) - f(x)g'(x)}{(g(x))^{2}}$		$\left \frac{d}{dx} \left(\frac{u}{v} \right) \right = \frac{dx}{v^2} \frac{dx}{v^2}$	

Table continued on the next page

Calculus (continued)				
integration by parts	$\int f(x)g'(x)dx = f(x)g(x)$	$(x) - \int f'(x)g(x)dx$	$\int u \frac{dv}{dx} dx = uv - \int v \frac{du}{dx} dx$	
volume of	about the x-axis		$V = \pi \int_{a}^{b} [f(x)]^{2} dx$	
a solid of revolution	about the y-axis		$V = \pi \int_{a}^{b} [f(y)]^{2} dy$	
Simpson's rule	$\int_{a}^{b} f(x) dx \approx \frac{w}{3} \left[f(x_0) + 4 \left[f(x_1) + f(x_3) + \cdots \right] + 2 \left[f(x_2) + f(x_4) + \cdots \right] + f(x_n) \right]$			
simple	If $\frac{d^2x}{dt^2} = -\omega^2x$ then $x = A\sin(\omega t + \alpha)$ or $x = A\cos(\omega t + \beta)$			
harmonic motion	$v^2 = \omega^2 \left(A^2 - x^2 \right)$	$T = \frac{2\pi}{\omega}$	$f = \frac{1}{T}$	
acceleration	$a = \frac{dv}{dt} = \frac{d^2x}{dt^2} = v\frac{dv}{dx} =$	$= \frac{d}{dx} \left(\frac{1}{2} v^2 \right)$		

Real and complex numbers			
complex number forms	$z = x + yi = r(\cos(\theta) + i\sin(\theta)) = r \cos(\theta)$		
modulus	$\left z\right = r = \sqrt{x^2 + y^2}$		
argument	$arg(z) = \theta$, $tan(\theta) = \frac{y}{x}$, $-\pi < \theta \le \pi$		
product	$z_1 z_2 = r_1 r_2 \operatorname{cis}(\theta_1 + \theta_2)$		
quotient	$\frac{z_1}{z_2} = \frac{r_1}{r_2} \operatorname{cis}(\theta_1 - \theta_2)$		
De Moivre's theorem	$z^n = r^n \operatorname{cis}(n\theta)$		

Statistics			
binomial theorem	$(x + y)^n = x^n + {n \choose 1} x^{n-1} y + \dots + {n \choose r} x^{n-r} y^r + \dots + y^n$		
permutation	$^{n}P_{r} = \frac{n!}{(n-r)!} = n \times (n-1) \times (n-2) \times \times (n-r+1)$		
combination	${}^{n}C_{r} = {n \choose r} = \frac{n!}{r!(n-r)!}$		
	mean	μ	
$\begin{array}{c c} \textbf{sample means} & & & \\ \hline \textbf{standard deviation} & & \\ \hline \hline \sqrt{n} & & \\ \hline \end{array}$			
approximate confidence interval for $\boldsymbol{\mu}$	$\left[\left(\overline{X} - z \frac{s}{\sqrt{n}}, \overline{X} + z \frac{s}{\sqrt{n}} \right) \right]$		

Trigonometry	
	$\sin^2(A) + \cos^2(A) = 1$
Pythagorean identities	$ \tan^2(A) + 1 = \sec^2(A) $
	$\cot^2(A) + 1 = \csc^2(A)$
angle sum and difference identities	sin(A + B) = sin(A)cos(B) + cos(A)sin(B)
	sin(A - B) = sin(A)cos(B) - cos(A)sin(B)
	cos(A + B) = cos(A)cos(B) - sin(A)sin(B)
	cos(A - B) = cos(A)cos(B) + sin(A)sin(B)

Table continued on the next page

Trigonometry (continued)		
double-angle identities	sin(2A) = 2sin(A)cos(A)	
	$\cos(2A) = \cos^2(A) - \sin^2(A)$	
	$=1-2\sin^2(A)$	
	$=2\cos^2(A)-1$	
	$\left \sin(A)\sin(B) \right = \frac{1}{2}\left(\cos(A-B)-\cos(A+B)\right)$	
product identities	$\cos(A)\cos(B) = \frac{1}{2}(\cos(A - B) + \cos(A + B))$	
	$sin(A)cos(B) = \frac{1}{2}(sin(A+B)+sin(A-B))$	
	$\cos(A)\sin(B) = \frac{1}{2}(\sin(A+B) - \sin(A-B))$	

Vectors and matrices	
magnitude	$ a = \begin{vmatrix} a_1 \\ a_2 \\ a_3 \end{vmatrix} = \sqrt{a_1^2 + a_2^2 + a_3^2}$
scalar (dot) product	$\mathbf{a} \cdot \mathbf{b} = \mathbf{a} \mathbf{b} \cos(\theta)$ $\mathbf{a} \cdot \mathbf{b} = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} \cdot \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix} = a_1 b_1 + a_2 b_2 + a_3 b_3$
vector equation of a line	

Vectors and matrices (continued)				
Cartesian equation of a line	$\frac{x - a_1}{d_1} = \frac{y - a_2}{d_2} = \frac{z - a_3}{d_3}$			
	$\mathbf{a} \times \mathbf{b} = \mathbf{a} \mathbf{b} \sin(\theta) \hat{\mathbf{n}}$			
vector (cross) product	$\mathbf{a} \times \mathbf{b} = \begin{pmatrix} \mathbf{a}_1 \\ \mathbf{a}_2 \\ \mathbf{a}_3 \end{pmatrix} \times \begin{pmatrix} \mathbf{b}_1 \\ \mathbf{b}_2 \\ \mathbf{b}_3 \end{pmatrix} = \begin{pmatrix} \mathbf{a}_2 \mathbf{b}_3 - \mathbf{a}_3 \mathbf{b}_2 \\ \mathbf{a}_3 \mathbf{b}_1 - \mathbf{a}_1 \mathbf{b}_3 \\ \mathbf{a}_1 \mathbf{b}_2 - \mathbf{a}_2 \mathbf{b}_1 \end{pmatrix}$			
vector projection	$igg $ a on $\mathfrak{b}=ig aig cosig(hetaig)\hat{\mathfrak{b}}=ig(a\cdotig)$	$\hat{\mathfrak{o}}$ $\hat{\mathfrak{o}}$		
vector equation of a plane	$r \cdot n = a \cdot n$			
Cartesian equation of a plane	ax + by + cz + d = 0			
determinant	If $\mathbf{A} = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ then $\det(\mathbf{A}) = ad - bc$			
multiplicative inverse matrix	$\begin{bmatrix} a & b \\ c & d \end{bmatrix}^{-1} = \frac{1}{\det(A)} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}, \det(A) \neq 0$			
	dilation			
linear transformations	rotation	$\begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix}$		
	reflection (in the line $y=x \tan(\theta)$)	$\begin{bmatrix} \cos(2\theta) & \sin(2\theta) \\ \sin(2\theta) & -\cos(2\theta) \end{bmatrix}$		

Physical constant	
magnitude of mean acceleration due to gravity on Earth	$g = 9.8 \text{ m s}^{-2}$