Specialist Mathematics v1.2

Mensuration

circumference of a circle	$C=2 \pi r$	area of a circle	$A=\pi r^{2}$
area of a parallelogram	$A=b h$	area of a trapezium	$A=\frac{1}{2}(a+b) h$
area of a triangle	$A=\frac{1}{2} b h$	total surface area of a cone	$S=\pi r s+\pi r^{2}$
total surface area of a cylinder	$S=2 \pi r h+2 \pi r^{2}$	surface area of a sphere	$S=4 \pi r^{2}$
volume of a cone	$V=\frac{1}{3} \pi r^{2} h$	volume of a cylinder	$V=\pi r^{2} h$
volume of a prism	$V=A h$	volume of a pyramid	
volume of a sphere	$V=\frac{4}{3} \pi r^{3}$		

Calculus

$\frac{d}{d x} x^{n}=n x^{n-1}$	$\int x^{n} d x=\frac{x^{n+1}}{n+1}+c$
$\frac{d}{d x} e^{x}=e^{x}$	$\int e^{x} d x=e^{x}+c$
$\frac{d}{d x} \ln (x)=\frac{1}{x}$	$\int \frac{1}{x} d x=\ln \|x\|+c$
$\frac{d}{d x} \sin (x)=\cos (x)$	$\int \sin (x) d x=-\cos (x)+c$

Calculus (continued)

Table continued on the next page

Calculus (continued)

integration by parts	$\int f(x) g^{\prime}(x) d x=f(x) g(x)-\int f^{\prime}(x) g(x) d x$	$\int u \frac{d v}{d x} d x=u v-\int v \frac{d u}{d x} d x$
volume of a solid of revolution	about the x-axis	$V=\pi \int_{a}^{b}[f(x)]^{2} d x$
	about the y -axis	$V=\pi \int_{a}^{b}[f(y)]^{2} d y$
Simpson's rule	$\int_{a}^{b} f(x) d x \approx \frac{W}{3}\left[f\left(x_{0}\right)+4\left[f\left(x_{1}\right)+f\left(x_{3}\right)+\cdots\right]+2\left[f\left(x_{2}\right)+f\left(x_{4}\right)+\cdots\right]+f\left(x_{n}\right)\right]$	
simple harmonic motion	If $\frac{d^{2} x}{d t^{2}}=-\omega^{2} x$ then $x=A \sin (\omega t+\alpha)$ or	$x=A \cos (\omega t+\beta)$
	$v^{2}=\omega^{2}\left(A^{2}-x^{2}\right) \quad T=\frac{2 \pi}{\omega}$	$f=\frac{1}{T}$
acceleration	$a=\frac{d v}{d t}=\frac{d^{2} x}{d t^{2}}=v \frac{d v}{d x}=\frac{d}{d x}\left(\frac{1}{2} v^{2}\right)$	

Real and complex numbers

complex number forms	$z=x+y i=r(\cos (\theta)+i \sin (\theta))=r \operatorname{cis}(\theta)$
modulus	$\|z\|=r=\sqrt{x^{2}+y^{2}}$
argument	$\arg (z)=\theta, \tan (\theta)=\frac{y}{x},-\pi<\theta \leq \pi$
product	$z_{1} z_{2}=r_{1} r_{2} \operatorname{cis}\left(\theta_{1}+\theta_{2}\right)$
quotient	$\frac{z_{1}}{z_{2}}=\frac{r_{1}}{r_{2}} \operatorname{cis}\left(\theta_{1}-\theta_{2}\right)$
De Moivre's theorem	$z^{n}=r^{n} \operatorname{cis}(n \theta)$

Statistics

binomial theorem	$(x+y)^{n}=x^{n}+\binom{n}{1} x^{n-1} y+\ldots+\binom{n}{r} x^{n-r} y^{r}+\ldots+y^{n}$	
permutation	${ }^{n} P_{r}=\frac{n!}{(n-r)!}=n \times(n-1) \times(n-2) \times \ldots \times(n-r+1)$	
combination	${ }^{n} C_{r}=\binom{n}{r}=\frac{n!}{r!(n-r)!}$	μ
sample means	mean	$\frac{\sigma}{\sqrt{n}}$
standard deviation	approximate confidence interval for μ	$\left(\bar{x}-z \frac{s}{\sqrt{n}}, \bar{x}+z \frac{s}{\sqrt{n}}\right)$

Trigonometry

Pythagorean identities	$\sin ^{2}(A)+\cos ^{2}(A)=1$ $\tan ^{2}(A)+1=\sec ^{2}(A)$ $\cot ^{2}(A)+1=\operatorname{cosec}^{2}(A)$
	$\sin (A+B)=\sin (A) \cos (B)+\cos (A) \sin (B)$
angle sum and	
difference identities	$\sin (A-B)=\sin (A) \cos (B)-\cos (A) \sin (B)$
	$\cos (A+B)=\cos (A) \cos (B)-\sin (A) \sin (B)$
	$\cos (A-B)=\cos (A) \cos (B)+\sin (A) \sin (B)$

Table continued on the next page

Trigonometry (continued)

double-angle identities	$\begin{aligned} \sin (2 A) & =2 \sin (A) \cos (A) \\ \cos (2 A) & =\cos ^{2}(A)-\sin ^{2}(A) \\ & =1-2 \sin ^{2}(A) \\ & =2 \cos ^{2}(A)-1 \end{aligned}$
product identities	$\begin{aligned} & \sin (A) \sin (B)=\frac{1}{2}(\cos (A-B)-\cos (A+B)) \\ & \cos (A) \cos (B)=\frac{1}{2}(\cos (A-B)+\cos (A+B)) \\ & \sin (A) \cos (B)=\frac{1}{2}(\sin (A+B)+\sin (A-B)) \\ & \cos (A) \sin (B)=\frac{1}{2}(\sin (A+B)-\sin (A-B)) \end{aligned}$

Vectors and matrices

magnitude	$\|a\|=\left\|\begin{array}{l}a_{1} \\ a_{2} \\ a_{3}\end{array}\right\|=\sqrt{a_{1}^{2}+a_{2}^{2}+a_{3}^{2}}$
scalar (dot) product	$a \cdot b=\|a\|\|b\| \cos (\theta)$
	$a \cdot b=\left(\begin{array}{l}a_{1} \\ a_{2} \\ a_{3}\end{array}\right) \cdot\left(\begin{array}{l}b_{1} \\ b_{2} \\ b_{3}\end{array}\right)=a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3}$
	$r=a+k d$

Vectors and matrices (continued)

Cartesian equation of a line	$\frac{x-a_{1}}{d_{1}}=\frac{y-a_{2}}{d_{2}}=\frac{z-a_{3}}{d_{3}}$
	$\mathrm{a} \times \mathrm{b}=\|\mathrm{a}\|\|\mathrm{b}\| \sin (\theta) \hat{n}$
vector (cross) product	$a \times b=\left(\begin{array}{l}a_{1} \\ a_{2} \\ a_{3}\end{array}\right) \times\left(\begin{array}{l}b_{1} \\ b_{2} \\ b_{3}\end{array}\right)=\left(\begin{array}{l}a_{2} b_{3}-a_{3} b_{2} \\ a_{3} b_{1}-a_{1} b_{3} \\ a_{1} b_{2}-a_{2} b_{1}\end{array}\right)$
vector projection	a on $b=\|a\| \cos (\theta) \hat{b}=(a \cdot \hat{b}) \hat{b}$
vector equation of a plane	$r \cdot n=a \cdot n$
Cartesian equation of a plane	$a x+b y+c z+d=0$
determinant	If $\mathbf{A}=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ then $\operatorname{det}(\mathbf{A})=\mathrm{ad}-\mathrm{bc}$
multiplicative inverse matrix	$\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]^{-1}=\frac{1}{\operatorname{det}(A)}\left[\begin{array}{lc}d & -b \\ -c & a\end{array}\right], \operatorname{det}(A) \neq 0$
linear transformations	dilation $\quad\left[\begin{array}{ll}a & 0 \\ 0 & b\end{array}\right]$
	rotation $\quad\left[\begin{array}{lr}\cos (\theta) & -\sin (\theta) \\ \sin (\theta) & \cos (\theta)\end{array}\right]$
	reflection (in the line $y=x \tan (\theta)$) $\quad\left[\begin{array}{rr}\cos (2 \theta) & \sin (2 \theta) \\ \sin (2 \theta) & -\cos (2 \theta)\end{array}\right]$

Physical constant

