Specialist Mathematics

Paper 2 - Technology-active

Section 1

Instructions

- Answer all questions in the question and response book.
- This book will not be marked.

QUESTION 1

Let $z=\operatorname{cis}\left(\frac{2 \pi}{5}\right)$.
$\operatorname{Im}\left(z^{4}\right)$ is
(A) $\quad-0.95$
(B) 0.09
(C) 0.31
(D) 0.81

QUESTION 2

The line l is described by the vector equation
$\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{c}0 \\ 7 \\ 13\end{array}\right)+k\left(\begin{array}{c}4 \\ 16 \\ -2\end{array}\right)$
Which of the following points lies on line l ?
(A) $(0,7,11)$
(B) $(2,15,12)$
(C) $(4,16,11)$
(D) $(4,23,15)$

QUESTION 3

Use implicit differentiation to determine the value of the gradient of $2 e^{x}-3 y^{2}+3 \pi^{2}=2 e$ at $(1, \pi)$.
(A) $\quad-24.17$
(B) -13.41
(C) 0.29
(D) 2.85

QUESTION 4

An object lies on a horizontal plane as shown in the diagram below.
When a force of 350 N is applied at an angle of 20°, the object remains stationary.

The frictional force acting on the object, correct to the nearest unit, is
(A) 119 N
(B) 120 N
(C) 328 N
(D) 329 N

QUESTION 5

When using proof by mathematical induction to show that $(1+i)^{4 n}=(-4)^{n}$ where $n \in Z^{+}$, the inductive step requires the proof of
(A) $(1+i)^{4}=(-4)^{1}$
(B) $(1+i)^{4 k}=(-4)^{k}$
(C) $(1+i)^{4 k+1}=(-4)^{k+1}$
(D) $(1+i)^{4 k+4}=(-4)^{k+1}$

QUESTION 6

The vector $\left(\begin{array}{c}1 \\ -2 \\ 1\end{array}\right)$ is normal to the plane containing the points $(0,0,0),(3,4,5)$ and $(2, k, 4)$.
The value of k is
(A) $\quad-6.5$
(B) -3
(C) 3
(D) 6.5

QUESTION 7

Consider the line that passes through the origin as shown in the complex plane below.

The subset of the complex plane that best defines this line is
(A) $\quad|z-3+2 i|=3.6$
(B) $|z+3-2 i|=3.6$
(C) $\arg (z-(3-2 i))=123.7^{\circ}$
(D) $\arg (z-3+2 i)=146.3^{\circ}$

QUESTION 8

Which of the following is a solution of the equation $z^{2}+2 i z-5=0$?
(A) $1-2 i$
(B) $1+2 i$
(C) $2-i$
(D) $2+i$

QUESTION 9

The win/loss results after a soccer competition involving four teams are represented in the matrix \mathbf{M} shown below.
$\mathbf{M}=\underbrace{c}_{-}$Losing teams

Key: Team A defeated Team B, drew with Team C and lost to Team D.

Given the model $\mathbf{M}+\mathbf{M}^{2}+\mathbf{M}^{3}$ to rank the teams, determine their final positions from first to fourth.
(A) $\mathrm{C}, \mathrm{A}, \mathrm{D}, \mathrm{B}$
(B) $\mathrm{C}, \mathrm{D}, \mathrm{A}, \mathrm{B}$
(C) $\mathrm{D}, \mathrm{A}, \mathrm{C}, \mathrm{B}$
(D) $\mathrm{D}, \mathrm{C}, \mathrm{A}, \mathrm{B}$

QUESTION 10

The velocity $v\left(\mathrm{~m} \mathrm{~s}^{-1}\right)$ of a particle at time $t(\mathrm{~s})$ is given by $v=\sin ^{-1}(t)(0 \leq t \leq 1 \mathrm{~s})$.
The acceleration of the particle when $t=0.2 \mathrm{~s}$ is
(A) $0.20 \mathrm{~m} \mathrm{~s}^{-2}$
(B) $1.02 \mathrm{~m} \mathrm{~s}^{-2}$
(C) $1.04 \mathrm{~m} \mathrm{~s}^{-2}$
(D) $1.37 \mathrm{~m} \mathrm{~s}^{-2}$

