Specialist Mathematics marking guide

Sample external assessment 2020

Paper 2: Technology-active (70 marks)

Assessment objectives

This assessment instrument is used to determine student achievement in the following objectives:

1. select, recall and use facts, rules, definitions and procedures drawn from Units 3 and 4
2. comprehend mathematical concepts and techniques drawn from Units 3 and 4
3. communicate using mathematical, statistical and everyday language and conventions
4. evaluate the reasonableness of solutions
5. justify procedures and decisions by explaining mathematical reasoning
6. solve problems by applying mathematical concepts and techniques drawn from Units 3 and 4.

Introduction

The Queensland Curriculum and Assessment Authority (QCAA) has developed mock external assessments for each General senior syllabus subject to support the introduction of external assessment in Queensland.
An external assessment marking guide (EAMG) has been created specifically for each mock external assessment.

The mock external assessments and their marking guides were:

- developed in close consultation with subject matter experts drawn from schools, subject associations and universities
- aligned to the external assessment conditions and specifications in General senior syllabuses
- developed under secure conditions.

Purpose

This document consists of an EAMG and an annotated response.
The EAMG:

- provides a tool for calibrating external assessment markers to ensure reliability of results
- indicates the correlation, for each question, between mark allocation and qualities at each level of the mark range
- informs schools and students about how marks are matched to qualities in student responses.

Mark allocation

Where a response does not meet any of the descriptors for a question or a criterion, a mark of ' 0 ' will be recorded.

Where no response to a question has been made, a mark of ' N ' will be recorded.

External assessment marking guide (EAMG)

Multiple choice

Question	Response
1	A
2	B
3	C
4	D
5	D
6	C
7	D
8	C
9	D
10	B

Short response

Question 11 (6 marks)
Sample response
The response
a) $(\cos (\theta)+i \sin (\theta))^{3}$

$$
\begin{aligned}
&=\cos ^{3}(\theta)+3 i \cos ^{2}(\theta) \sin (\theta) \\
&+3 i^{2} \cos (\theta) \sin ^{2}(\theta)+i^{3} \sin ^{3}(\theta)
\end{aligned}
$$

$=\cos ^{3}(\theta)+3 i \cos ^{2}(\theta) \sin (\theta)$

$$
-3 \cos (\theta) \sin ^{2}(\theta)-i \sin ^{3}(\theta)
$$

b) $(\cos (\theta)+i \sin (\theta))^{3}=\cos (3 \theta)+i \sin (3 \theta)$
c) Equating real parts:
$\cos (3 \theta)=\cos ^{3}(\theta)-3 \cos (\theta) \sin ^{2}(\theta)$
$=\cos ^{3}(\theta)-3 \cos (\theta)\left(1-\cos ^{2}(\theta)\right)$
$=\cos ^{3}(\theta)-3 \cos (\theta)+3 \cos ^{3}(\theta)$
$=4 \cos ^{3}(\theta)-3 \cos (\theta)$
correctly uses binomial expansion [1 mark]
correctly simplifies the expression [1 mark]
correctly uses De Moivre's theorem [1 mark]
correctly establishes the equation [1 mark]
correctly simplifies to complete the proof [1 mark]
shows logical organisation communicating key steps [1 mark]

Question 12 (6 marks)

Sample response
a) The equation of the circle is $x^{2}+y^{2}=4^{2}$

The equation of the semicircle is $y=\sqrt{16-x^{2}}$
b) $\quad V=\pi \int_{-4}^{4}\left(\sqrt{16-x^{2}}\right)^{2} d x$

Using the integration facility of GDC
$V \approx 268.08$ units 3
c) This result should equate to the volume of a sphere.
$\mathrm{V}=\frac{4}{3} \pi(4)^{3} \approx 268.08$ units 3
The answer is reasonable.

The response
correctly determines the equation of the circle [1 mark]
determines equation of semicircle [1 mark]
establishes volume as definite integral [1 mark]
determines volume [1 mark]
communicates rotation will form a sphere [1 mark]
evaluates the reasonableness of the result [1 mark]

Question 13 (5 marks)

Sample response
a) Female heights:

95\% CI:
$\left(\bar{x}-z \frac{s}{\sqrt{n}}, \bar{x}+z \frac{s}{\sqrt{n}}\right)$
$\left(167.4-z \frac{4.3}{\sqrt{78}}, 167.4+z \frac{4.3}{\sqrt{78}}\right)$
Using confidence interval facility of GDC CI $=(166.45,168.35) \mathrm{cm}$
b) Male heights:

Margin of error:
$z \frac{s}{\sqrt{n}}=\frac{177.223-175.377}{2}$
$z \frac{5.1}{\sqrt{62}}=0.923$
$z \approx 1.425$

Using normal cdf facility of GDC $P(-1.425 \leq z \leq 1.425) \approx 84.59 \%$

Confidence level used was 84.6\%.

The response
correctly establishes the interval using the given information and the confidence interval definition [1 mark]
correctly determines the 95\% CI [1 mark]
correctly calculates the z value [1 mark]
determines confidence level [1 mark]
determines answer to required degree of accuracy (nearest 0.1\%) [1 mark]

Question 14 (5 marks)

Sample response	The response
a) $\mu=4$ years $\Rightarrow \lambda=\frac{1}{4}$	correctly determines the parameter λ [$\mathbf{1}$ mark]
$P(3 \leq x \leq 5)=\int_{3}^{5} 0.25 e^{-0.25 x} d x$	establishes probability as definite integral [1 mark]
Using the integration facility of GDC $P(3 \leq x \leq 5) \approx 0.19$	determines probability [1 mark]
b) $\begin{aligned} & P(0<x<k)=0.5 \\ & \int_{0}^{k} 0.25 e^{-0.25 x} d x=0.5 \end{aligned}$	establishes definite integral equation [1 mark]
Using the solve facility of GDC Number of years ≈ 2.77	determines k [$\mathbf{1}$ mark]

Sample response
a) The number 0.8 refers to number of females born on average to a 3 -year-old female.
b) Year 2:

Using matrix facility of GDC
$\mathbf{N}_{2}=\mathbf{L}^{1} \times \mathbf{N}_{1}=\left[\begin{array}{c}35 \\ 4.75 \\ 41.5 \\ 16\end{array}\right]$

Total female population ≈ 97
c) Year 11:

Using matrix facility of GDC
$\mathbf{N}_{11}=\mathbf{L}^{10} \times \mathbf{N}_{1}$

Total female population ≈ 91

$$
\text { Total population } \quad \approx 91 \div 0.55
$$

≈ 165

The response
correctly explains the meaning of the value [1 mark]
correctly generates the population matrix [1 mark]
correctly calculates the total female population in Year 2, rounded to the nearest whole number [1 mark]
correctly establishes the formula to generate the population matrix [1 mark]
correctly calculates the total female population at the start of Year 11 [1 mark]
determines total population at the start of Year 11, rounded to the nearest whole number [1 mark]

Question 16 (4 marks)

Sample response
a) Vectors in the plane:
$\overrightarrow{A B}=b-a=\left(\begin{array}{l}1 \\ 2 \\ 2\end{array}\right)$
$\overrightarrow{A C}=c-a=\left(\begin{array}{c}-1 \\ 0 \\ -3\end{array}\right)$

Normal to plane:
Using vector facility of GDC
$\boldsymbol{n}=\overrightarrow{A B} \times \overrightarrow{A C}=\left(\begin{array}{c}-6 \\ 1 \\ 2\end{array}\right)$
b) Equation of plane:
$r . n=a . n$
$\left(\begin{array}{l}x \\ y \\ z\end{array}\right) \cdot\left(\begin{array}{c}-6 \\ 1 \\ 2\end{array}\right) \cdot\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right) \cdot\left(\begin{array}{c}-6 \\ 1 \\ 2\end{array}\right)$
$-6 x+y+2 z=2$

The response
correctly determines 2 vectors in the plane [1 mark]
determines normal to plane [1 mark]
establishes equation using appropriate substitution

[1 mark]

Question 17 (7 marks)

Sample response
a) $\quad P(X>500)=0.9$

Using inverse normal facility of GDC
$z_{1} \approx-1.282$
$P(x>X)=\frac{x-\mu}{\frac{\sigma}{\sqrt{n}}}$
$P(x>500)=\frac{500-503.5}{\frac{17.2}{\sqrt{n}}}$
$\frac{500-503.5}{\frac{17.2}{2}}=-1.282$

Using solve facility of GDC
$n \approx 39.69$
Smallest sample size is 40 .
b) Since $n \geq 30$, the sample mean distribution can be assumed to be normal (even if the amount dispensed into each bottle is not).

The claim is not reasonable.

Mark
uses appropriate mathematical representation [1 mark]
correctly determines the z value [1 mark]
generates equation in n [1 mark]
solves for n [1 mark]
provides an authentic solution [1 mark]
identifies normality for $n \geq 30$ [1 mark]
evaluates the reasonableness of the claim [1 mark]

Question 18 (7 marks)

Sample response
The response

$$
\begin{aligned}
& F=m a \\
& \frac{60+5 x}{12 x-7 x^{2}+x^{3}}=5 a \\
& a=\frac{12+x}{12 x-7 x^{2}+x^{3}} \\
& \frac{d}{d x}\left(\frac{1}{2} v^{2}\right)=\frac{12+x}{12 x-7 x^{2}+x^{3}} \\
& v^{2}=\int \frac{24+2 x}{x(x-3)(x-4)} d x \\
& \text { Using partial fractions: } \\
& \frac{24+2 x}{x(x-3)(x-4)}=\frac{A}{x}+\frac{B}{x-3}+\frac{C}{x-4} \\
& =\frac{A(x-3)(x-4)+B x(x-4)+C x(x-3)}{x(x-3)(x-4)} \\
& \text { Equating parts: } \\
& 24+2 x=A(x-3)(x-4)+B x(x-4)+C x(x-3) \\
& \text { Let } x=0: \\
& 24=12 A \rightarrow A=2 \\
& \text { Let } x=3: \\
& 30=-3 B \rightarrow B=-10 \\
& \text { Let } x=4: \\
& 32=4 C \rightarrow C=8
\end{aligned}
$$

correctly determines a relationship between v and x [1 mark]
correctly establishes the equation required to determine numerators A, B and C [1 mark]

$$
\begin{aligned}
& v^{2}=\int \frac{2}{x}-\frac{10}{x-3}+\frac{8}{x-4} d t \\
&=2 \ln (x)-10 \ln (x-3)+8 \ln (x-4)+k \quad(5 \leq x \leq 10)
\end{aligned}
$$

Given $v=0$ when $x=5$:
$0=2 \ln |5|-10 \ln |5-3|+8 \ln |5-4|+k$
$k=10 \ln (2)-2 \ln (5)$
$v^{2}=2 \ln (x)-10 \ln (x-3)+8 \ln (x-4)+10 \ln (2)-2 \ln (5)$

When speed $=0.5, v^{2}=0.25$
$2 \ln (x)-10 \ln (x-3)+8 \ln (x-4)+10 \ln (2)-2 \ln (5)=0.25$

Using solve facility of GDC
$x=5.08 \mathrm{~m}$
determines general solution for v^{2} [1 mark]

determines v^{2} [1 mark]

establishes required value of velocity for equation [1 mark]
solves for position of object [1 mark]

Sample response
a) If the objects are to collide, they must have the same position at the same time, t_{1}
$\cos \left(a t_{1}\right)=\frac{b t_{1}}{2}$
$2 \sin \left(a t_{1}\right)=\sqrt{3} b t_{1}$
$\sin \left(a t_{1}\right)=\frac{\sqrt{3} b t_{1}}{2}$
$-\sqrt{3} \cos \left(a t_{1}\right)=\frac{\sqrt{3} t_{1}}{2}$
$\cos \left(a t_{1}\right)=\frac{-t_{1}}{2}$
Equating [1] and [3]:
$b=-1$
$[1]^{2}+[2]^{2}:$
$\cos ^{2}\left(a t_{1}\right)+\sin ^{2}\left(a t_{1}\right)=\frac{t_{1}^{2}}{4}+\frac{3 t_{1}^{2}}{4}$
$1=t_{1}^{2}$
$t_{1}=1 \quad($ as $t \geq 0)$
collision occurs after 1 s .

The response
provides reasons for equating components of the two position vectors [1 mark]
correctly establishes three simultaneous equations

[1 mark]

solves for b [1 mark]

determines when objects collide [1 mark]

$$
\text { At } t=1 \text { : }
$$

$$
\boldsymbol{r}_{\boldsymbol{B}}(t)=\frac{-1 \times 1}{2} \hat{\boldsymbol{\imath}}+\sqrt{3} \times-1 \times 1 \hat{\boldsymbol{\jmath}}+\frac{\sqrt{3} \times 1}{2} \widehat{\boldsymbol{k}}
$$

$$
\text { collision occurs at } \frac{-1}{2} \hat{\boldsymbol{\imath}}-\sqrt{3} \hat{\boldsymbol{\jmath}}+\frac{\sqrt{3}}{2} \widehat{\boldsymbol{k}}
$$

b) substituting $b=-1, t=1$ into [1] $\cos (a)=\frac{-1}{2}$

$$
a=\cos ^{-1}\left(\frac{-1}{2}\right)
$$

$$
=\frac{4 \pi}{3} \quad(\text { given }-\pi \leq a \leq 0)
$$

$$
\boldsymbol{r}_{\boldsymbol{A}}(t)=\cos \left(\frac{4 \pi}{3}\right) \hat{\imath}+2 \sin \left(\frac{4 \pi}{3}\right) \hat{\jmath}-\sqrt{3} \cos \left(\frac{4 \pi}{3}\right) \hat{\boldsymbol{k}}
$$

$$
=\frac{-1}{2} \hat{\boldsymbol{\imath}}-\sqrt{3} \hat{\boldsymbol{\jmath}}+\frac{\sqrt{3}}{2} \widehat{\boldsymbol{k}}
$$

Since $r_{A}=r_{B}$, the solution is reasonable.
determines position vector of point of collision [1 mark]

determines value of a [$\mathbf{1}$ mark]

evaluates the reasonableness of the solution [1 mark]

Sample response
a) Substituting each of the points into
$y=a x^{3}+b x^{2}+c x$
$(2,2) \rightarrow 2=8 a+4 b+2 c$
$(3,1) \rightarrow 1=27 a+9 b+3 c$
$(5,5) \rightarrow 5=125 a+25 b+5 c$
Using matrix form:
$\left[\begin{array}{ccc}8 & 4 & 2 \\ 27 & 9 & 3 \\ 125 & 25 & 5\end{array}\right] \cdot\left[\begin{array}{l}a \\ b \\ c\end{array}\right]=\left[\begin{array}{l}2 \\ 1 \\ 5\end{array}\right]$
$\left[\begin{array}{l}a \\ b \\ c\end{array}\right]=\left[\begin{array}{ccc}8 & 4 & 2 \\ 27 & 9 & 3 \\ 125 & 25 & 5\end{array}\right]^{-1} \cdot\left[\begin{array}{l}2 \\ 1 \\ 5\end{array}\right]$
Using matrix facility of GDC
$\left[\begin{array}{l}a \\ b \\ c\end{array}\right]=\left[\begin{array}{c}\frac{1}{3} \\ -\frac{7}{3} \\ \frac{13}{3}\end{array}\right]$
$a=\frac{1}{3}, b=-\frac{7}{3}, c=\frac{13}{3}$
b) Verifying by substituting $(2,2)$ into

$$
\left.\begin{array}{l}
y=\frac{1}{3} x^{3}-\frac{7}{3} x^{2}+\frac{13}{3} x \\
\text { RHS }
\end{array}=\frac{1}{3}(2)^{3}-\frac{7}{3}(2)^{2}+\frac{13}{3}(2)\right) .
$$

The response
correctly establishes three equations in a, b and c [1 mark]
translates three equations into a matrix equation [1 mark]
uses multiplicative inverse [1 mark]
determine a, b and c [1 mark]
shows logical organisation communicating key steps [1 mark]
substitutes given point into cubic function [1 mark]
evaluates the reasonableness of the solution [1 mark]

