Specialist Mathematics

Paper 2 - Technology-active

General instruction

- Work in this book will not be marked.

Section 1

QUESTION 1

The position $x(\mathrm{~m})$ at time $t(\mathrm{~s})$ of a 7 kg particle moving in a straight line is given by

$$
x=3 t^{3}-5 t^{2}+2 t-4 \text { for } 0 \leq t \leq 10
$$

Determine the time when the particle has a momentum of $620 \mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1}$.
(A) 1.73 s
(B) 2.60 s
(C) 3.66 s
(D) 3.71 s

QUESTION 2

The Leslie matrix for a certain endangered species is given.

$$
\mathbf{L}=\left[\begin{array}{ccc}
0.8 & 2.4 & 0.3 \\
0.4 & 0 & 0 \\
0 & 0.55 & 0
\end{array}\right]
$$

A group of the species was moved into a secure property at the start of 2018. The initial female population is given.

$$
\mathbf{N}_{0}=\left[\begin{array}{c}
150 \\
80 \\
40
\end{array}\right]
$$

The best estimate of the total female population at the start of 2025 is
(A) 3000
(B) 4000
(C) 5000
(D) 6000

QUESTION 3

The masses of packages of cheese produced by a company are assumed to be normally distributed with a known mean of μ grams and a standard deviation of 7.37 grams.
The packages of cheese are labelled to contain 500 grams.
Given there is a 25% probability that the mean mass of 20 randomly selected packages will be less than the labelled amount, the value of μ is
(A) 498.89
(B) 500.25
(C) 501.11
(D) 504.98

QUESTION 4

A particle is moving with simple harmonic motion described by the equation $x=1.32 \cos \left(\frac{\pi t}{2}\right)$ where $x(\mathrm{~m})$ is the displacement of the particle from a central position over time $t(\mathrm{~s}), t \geq 0$
The maximum speed of the particle is
(A) $2.07 \mathrm{~m} \mathrm{~s}^{-1}$
(B) $4.15 \mathrm{~m} \mathrm{~s}^{-1}$
(C) $4.30 \mathrm{~m} \mathrm{~s}^{-1}$
(D) $5.28 \mathrm{~m} \mathrm{~s}^{-1}$

QUESTION 5

The gradient of the tangent at point A on the curve $y^{2}=4 x$ is 1.36
The x-coordinate of A is
(A) 0.12
(B) 0.46
(C) 0.54
(D) 1.47

QUESTION 6

Solve the matrix equation for \mathbf{X}.

$$
\left[\begin{array}{ll}
0 & 1 \\
2 & 3
\end{array}\right] \mathbf{X}\left[\begin{array}{ll}
4 & 5 \\
6 & 7
\end{array}\right]=\left[\begin{array}{ll}
8 & 9 \\
0 & 1
\end{array}\right]
$$

(A) $\left[\begin{array}{cc}-9 & -9 \\ 4 & 4\end{array}\right]$
(B) $\left[\begin{array}{cc}3 & -4 \\ -1 & 2\end{array}\right]$
(C) $\left[\begin{array}{cc}13 & -14 \\ -11 & 12\end{array}\right]$
(D) $\left[\begin{array}{cc}54 & 56 \\ -28 & -29\end{array}\right]$

QUESTION 7

The heights of all students at a school were measured. A mean height of 157.0 cm was calculated from this data.

A random sample of 35 students from this school was selected. The mean height of this sample was 159.7 cm with a standard deviation of 8.7 cm .

The smallest confidence level that could be used to produce a confidence interval that contains μ, based on this sample, is
(A) 85%
(B) 90%
(C) 95%
(D) 99%

QUESTION 8

Let $u=1+i$ and $v=-12+5 i$
$\operatorname{Re}\left(u^{5}-|v|\right)$ is
(A) -17
(B) -4
(C) 8
(D) 9

QUESTION 9

Two objects, P and Q , move in three-dimensional space such that their positions, \boldsymbol{r}, over time, t, are described by the following vectors until they collide.

$$
\begin{aligned}
& \boldsymbol{r}_{P}=\left(t^{2}-4 t\right) \hat{\boldsymbol{\imath}}+\left(2 t^{2}-t+3\right) \hat{\boldsymbol{\jmath}}-(6-5 t) \widehat{\boldsymbol{k}} \\
& \boldsymbol{r}_{Q}=\left(-t^{2}+2 t\right) \hat{\boldsymbol{\imath}}+\left(3 t+t^{2}\right) \hat{\boldsymbol{\jmath}}+t^{2} \widehat{\boldsymbol{k}}
\end{aligned}
$$

The objects will collide at
(A) $t=0$
(B) $t=1$
(C) $t=2$
(D) $t=3$

QUESTION 10

The time taken by the Year 7 students at a particular school to complete a standardised test is known to be normally distributed. A researcher claims that the population mean is 8.2 minutes.
The mean time taken to complete this test by a sample of 10 of these students is 8.1 minutes with a standard deviation of 1.2 minutes.
The 95% confidence interval for μ based on this sample is
(A) $(7.36,8.84)$ minutes
(B) $(7.46,8.94)$ minutes
(C) $(7.86,8.33)$ minutes
(D) $(7.96,8.44)$ minutes

