G 1	1							J		ı		
Schoo	l nam	e										
Given	name	e/s							Attack	-		
Famil	y nam	e						barc	ode ID	label	here	
Exte	rnal	asse	ssme	nt				Book	of		book	s used
								Question ar	nd re	spon	se bo	ook

Specialist Mathematics

Paper 1 — Technology-free

Time allowed

- Perusal time 5 minutes
- Working time 90 minutes

General instructions

- Answer all questions in this question and response book.
- Calculators are **not** permitted.
- QCAA formula book provided.
- Planning paper will not be marked.

Section 1 (10 marks)

• 10 multiple choice questions

Section 2 (55 marks)

• 9 short response questions

Section 1

Instructions

- Choose the best answer for Questions 1–10.
- This section has 10 questions and is worth 10 marks.
- Use a 2B pencil to fill in the A, B, C or D answer bubble completely.
- If you change your mind or make a mistake, use an eraser to remove your response and fill in the new answer bubble completely.

	A	В	С	D
Example:			0	

	A	В	С	D
1.	0			
2.				
3.				
4.				
5.		\bigcirc		\bigcirc
6.	0		0	
7.		\bigcirc		\bigcirc
8.		\bigcirc		\bigcirc
9.	0	\bigcirc		\bigcirc
10.	0	\bigcirc		\bigcirc

Section 2

Instructions

- Write using black or blue pen.
- Questions worth more than one mark require mathematical reasoning and/or working to be shown to support answers.
- If you need more space for a response, use the additional pages at the back of this book.
 - On the additional pages, write the question number you are responding to.
 - Cancel any incorrect response by ruling a single diagonal line through your work.
 - Write the page number of your alternative/additional response, i.e. See page ...
 - If you do not do this, your original response will be marked.
- This section has nine questions and is worth 55 marks.

DO NOT WRITE ON THIS PAGE

THIS PAGE WILL NOT BE MARKED

QUESTION 11 (7 marks)

The vertices of a regular hexagon are positioned on the circumference of a unit circle as shown on the Argand plane.

Consider the complex number w, as shown on the plane.

a) Determine w, expressing your answer in the form $r \operatorname{cis}(\theta)$. [1 mark]

b) Convert w into Cartesian form. [2 marks]

c)	State the value of <i>n</i> .	[1 mark
d)	State the value of a.	[1 mark
e)	Verify that w satisfies the equation $z^n = a$ using the results from 11c) and 11d).	[2 marks

QUESTION 12 (8 marks)

Consider the vertices A, B and C of the rectangular prism as shown.

a) State the coordinates of A, B and C.

[1 mark]

b) Determine a unit vector, \hat{n} , that is normal to the plane containing A, B and C.

[3 marks]

c) Verify that \hat{n} is perpendicular.	endicular to \overrightarrow{AB} .	[2 mart
d) Determine the Cartes	ian equation of the plane that contains A, B and C.	[2 marl

QUESTION 13 (4 marks)

The expected value of an exponential random variable X with parameter $\lambda > 0$ can be determined using the rule

$$E(X) = \int_0^\infty x \lambda e^{-\lambda x} dx$$

Express your answer in simplest form.	Use integration by parts to determ	nine $E(X)$.		

a)	Determine $a(x)$ where a is the acceleration (m s ⁻²) of the object.	[2 marks
b)	Use the result from 14a) to determine $a(0)$, given $-2\pi \le a(0) \le 0$. Express your answer in simplest form.	[2 marks
		<u>[</u>

QUESTION 15 (6 marks)

The points O(0, 0, 0), A(-6, 2, -2) and C(3, 1, 2) are represented in three-dimensional space in the diagram.

OABC forms a parallelogram in three-dimensional space.

a)	Determine the coordinates of B.	[1 mark]

M is the midpoint of BC.

b)	Determine the vector that represents \overrightarrow{OM} .	[1 mark]

c)	Determine the vector that represents \overrightarrow{ON} .	[2 marks
d)	Use a vector method to show that O, B and N lie on a straight line.	[2 mark.
d)	Use a vector method to show that O, B and N lie on a straight line.	[2 mark.
d)	Use a vector method to show that O, B and N lie on a straight line.	[2 marks
d)	Use a vector method to show that O, B and N lie on a straight line.	[2 marks
d)	Use a vector method to show that O, B and N lie on a straight line.	[2 marks
d)	Use a vector method to show that O, B and N lie on a straight line.	[2 marks
d)	Use a vector method to show that O, B and N lie on a straight line.	[2 marks
d)	Use a vector method to show that O, B and N lie on a straight line.	[2 marks

	18 (6 marks)			
Consider the function $P(z) = 2z^4 + az^3 + 6z^2 + az + b$ where $a, b \in Z^+$				
One of the roots of $P(z)$ is $z = -i$				
Determine the joint component.	possible value/s for a and b such that all remaining roots of $P(z)$ have an imaginary			

QUESTION 19 (7 marks)

A circular-based bowl has been positioned symmetrically on a Cartesian plane as shown in the diagram.

The bowl has a shape that can be generated by rotating the curve $y = \frac{4}{8-x} - 1$ about the *y*-axis for $4 \le x \le 7.6$ cm.

The bowl is being filled with a liquid at the rate of $7\pi~{\rm cm}^3\,{\rm s}^{-1}$.

Determine the rate at which the depth of liquid is increasing when the depth of liquid reaches one-third of the height of the bowl.

© State of Queensland (QCAA) 2020

Licence: https://creativecommons.org/licenses/by/4.0 | Copyright notice: www.qcaa.qld.edu.au/copyright — lists the full terms and conditions, which specify certain exceptions to the licence. | Attribution: © State of Queensland (QCAA) 2020