

External assessment 2025

Multiple choice question book

Specialist Mathematics

Paper 1 — Technology-free

General instruction

- Work in this book will not be marked.

Queensland
Government

QCAA

Queensland Curriculum
& Assessment Authority

Section 1

Instruction

- Respond to these questions in the question and response book.

QUESTION 1

Use the substitution $u = x^2$ to express $\int 2xe^{x^2} dx$ in terms of u .

(A) $\int e^u du$

(B) $\int \frac{1}{2} e^u du$

(C) $\int u e^u du$

(D) $\int 2\sqrt{u} e^u du$

QUESTION 2

The position vector of a particle at time t is given by $r = \sin(t)\hat{i} + \cos(t)\hat{j}$.

The path of the particle is

(A) hyperbolic.

(B) parabolic.

(C) elliptical.

(D) circular.

QUESTION 3

The polynomial $P(z) = z^3 + pz^2 + qz + 1$ has complex conjugate roots when

(A) $p = 1$ and $q = 1$

(B) $p = 1$ and $q = i$

(C) $p = i$ and $q = 1$

(D) $p = i$ and $q = i$

THIS PAGE WILL NOT BE MARKED

QUESTION 4

X is a random variable with mean μ and standard deviation σ .

From random samples of X values, each of size n , the sample mean is calculated. This sampling and calculation is repeated a large number of times.

The mean of the distribution of the sample means would be approximately

(A) $\frac{\bar{x}}{n}$

(B) $\frac{\mu}{\sqrt{n}}$

(C) \bar{x}

(D) μ

QUESTION 5

Within the method of proof using mathematical induction, for which sum is the initial statement true?

(A) $\sum_{i=1}^n i^3 = n^2(n+1)^2$

(B) $\sum_{i=1}^n i^3 = 2n^2(n+1)^2$

(C) $\sum_{i=1}^n i^3 = \frac{n^2(n+1)^2}{2}$

(D) $\sum_{i=1}^n i^3 = \frac{n^2(n+1)^2}{4}$

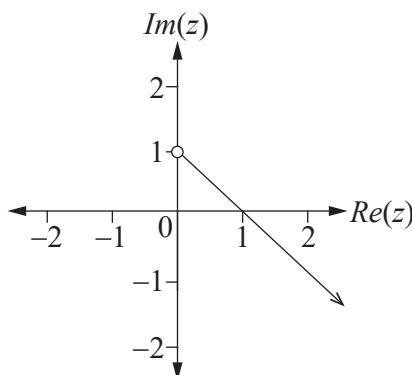
THIS PAGE WILL NOT BE MARKED

QUESTION 6

At time t , a particle travels with a velocity of $v = \left(\frac{2}{1+t^2} \right) \hat{i} - 2t \hat{j}$.

Determine a general expression for the position vector, \mathbf{r} , of the particle during this motion.

(A) $\mathbf{r} = 2 \tan^{-1}(t) \hat{i} - 2 \hat{j} + \mathbf{c}$


(B) $\mathbf{r} = 2 \tan^{-1}(t) \hat{i} - t^2 \hat{j} + \mathbf{c}$

(C) $\mathbf{r} = \frac{1}{2} \tan^{-1}(t) \hat{i} - 2 \hat{j} + \mathbf{c}$

(D) $\mathbf{r} = \frac{1}{2} \tan^{-1}(t) \hat{i} - t^2 \hat{j} + \mathbf{c}$

QUESTION 7

For $z \in C$, a subset of the complex plane of the form $\text{Arg}(z - z_1) = \theta$ is shown.

The values of z_1 and θ respectively are

(A) $-i$ and $-\frac{\pi}{4}$

(B) $-i$ and $\frac{\pi}{4}$

(C) i and $-\frac{\pi}{4}$

(D) i and $\frac{\pi}{4}$

THIS PAGE WILL NOT BE MARKED

QUESTION 8

The position vectors of two objects over time, t , where $t \geq 0$, are given by

$$r_1(t) = -2\hat{i} + t^2\hat{j}$$
$$r_2(t) = at\hat{i} + 4\hat{j} \quad (\text{where } a \in R)$$

Given that the two objects collide, the value of a is

- (A) 2
- (B) 1
- (C) -1
- (D) -2

QUESTION 9

An approximate confidence interval for a population mean is calculated based on a sample size of 16 and is found to have width, w .

A second confidence interval is calculated from another sample with the same sample standard deviation.

Given that the same z -value was used for both intervals and the width of the second interval is $2w$, what is the size of the second sample?

- (A) 2
- (B) 4
- (C) 8
- (D) 64

QUESTION 10

Given z_1 and z_2 are complex numbers, which statement is **always** true?

- (A) $|z_1 + z_2| = |z_1| + |z_2|$
- (B) $|z_1 + z_2| \neq |z_1| + |z_2|$
- (C) $|z_1 + z_2| \leq |z_1| + |z_2|$
- (D) $|z_1 + z_2| \geq |z_1| + |z_2|$

THIS PAGE WILL NOT BE MARKED

THIS PAGE IS INTENTIONALLY BLANK

THIS PAGE WILL NOT BE MARKED

THIS PAGE IS INTENTIONALLY BLANK

© State of Queensland (QCAA) 2025

Licence: <https://creativecommons.org/licenses/by/4.0> | Copyright notice: www.qcaa.qld.edu.au/copyright — lists the full terms and conditions, which specify certain exceptions to the licence. | Attribution: © State of Queensland (QCAA) 2025