LUI

School code \square

\square

External assessment 2023

Specialist Mathematics

Paper 1 — Technology-free

Time allowed

- Perusal time - 5 minutes
- Working time - 90 minutes

General instructions

- Answer all questions in this question and response book.
- Calculators are not permitted.
- QCAA formula book provided.
- Planning paper will not be marked.

Section 1 (10 marks)

- 10 multiple choice questions

Section 2 (50 marks)

- 9 short response questions

DO NOT WRITE ON THIS PAGE

THIS PAGE WILL NOT BE MARKED

Section 1

Instructions

- This section has 10 questions and is worth 10 marks.
- Use a 2 B pencil to fill in the $\mathrm{A}, \mathrm{B}, \mathrm{C}$ or D answer bubble completely.
- Choose the best answer for Questions 1-10.
- If you change your mind or make a mistake, use an eraser to remove your response and fill in the new answer bubble completely.

Ensure you have filled an answer bubble for each question.

Section 2

Instructions

- Write using black or blue pen.
- Questions worth more than one mark require mathematical reasoning and/or working to be shown to support answers.
- If you need more space for a response, use the additional pages at the back of this book.
- On the additional pages, write the question number you are responding to.
- Cancel any incorrect response by ruling a single diagonal line through your work.
- Write the page number of your alternative/additional response, i.e. See page ...
- If you do not do this, your original response will be marked.
- This section has nine questions and is worth 50 marks.

DO NOT WRITE ON THIS PAGE

THIS PAGE WILL NOT BE MARKED

QUESTION 11 (5 marks)

Determine the following definite integrals.
a) $\int_{0}^{1} \frac{1}{1+x^{2}} d x$
[2 marks]
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
b) $\int_{0}^{\frac{\pi}{4}} 2 \sin ^{2}(x) d x \quad$ [3 marks]
\qquad

Do not write outside this box.

QUESTION 12 (5 marks)

Given $\boldsymbol{A}=\left(\begin{array}{rr}1 & -2 \\ 1 & 2\end{array}\right), \boldsymbol{B}=\left(\begin{array}{ll}0 & 2 \\ 1 & 3\end{array}\right)$ and $\boldsymbol{C}=\left(\begin{array}{rr}-1 & -1 \\ 0 & 3\end{array}\right)$, determine \boldsymbol{X} in the matrix equation $\boldsymbol{X} \boldsymbol{A}-\boldsymbol{X} \boldsymbol{C}=\boldsymbol{B}$.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Do not write outside this box.

QUESTION 13 (5 marks)

Given $z \in C$, where $z \neq 0$, prove $\frac{|z|}{z \bar{z}}=\left|z^{-1}\right|$.
\qquad

Do not write outside this box.

QUESTION 14 (6 marks)

Consider a cube with three edges positioned along the x-, y - and z-axes on the Cartesian plane as shown. Points O, A and B are vertices of the cube.

a) Given $\overrightarrow{O A}=2 \hat{\boldsymbol{i}}$, determine $\overrightarrow{O B}$. Express your answer in terms of $\hat{\boldsymbol{j}}$ and $\hat{\boldsymbol{k}}$.
b) Calculate $\overrightarrow{O A} \times \overrightarrow{O B}$.
\qquad
\qquad
\qquad

Consider the triangle formed by joining points O, A and B.
c) Use the result from Question 14b) to determine the area of the triangle.
\qquad
\qquad
\qquad
\qquad
\qquad

[^0]Let points M and N be the midpoints of the triangle's sides $O A$ and $O B$ respectively.
d) Determine $\overrightarrow{M N}$.
\qquad
\qquad
\qquad
\qquad
e) Use the result from Question 14d) to show that the length of $A B$ is twice the length of $M N$.
\qquad
\qquad
\qquad
\qquad
\qquad

Do not write outside this box.

QUESTION 15 (5 marks)

The sum of a geometric progression with n terms, where the first term is 1 and the common ratio is r, is given by

$$
1+r+r^{2}+r^{3}+\ldots+r^{n-1}=\frac{r^{n}-1}{r-1}(\text { for } r \neq 1)
$$

Prove that this rule is true $\forall n \in Z^{+}$using mathematical induction by completing the steps of the proof as indicated.
a) Initial statement:
\qquad
\qquad
\qquad

Assuming the rule is true for $n=k$,

$$
1+r+r^{2}+r^{3}+\ldots+r^{k-1}=\frac{r^{k}-1}{r-1}(r \neq 1)
$$

b) Inductive step:
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Do not write outside this box.
c) Conclusion
\qquad
\qquad
\qquad
\qquad
\qquad

QUESTION 16 (5 marks)

A curve is defined by the parametric equations $x=2 \tan (\theta)$ and $y=3 \sin (2 \theta)$, where $0 \leq \theta<\frac{\pi}{2}$.
Given that $\frac{d y}{d x}$ can be expressed in the form $a \cos ^{4}(\theta)+b \cos ^{2}(\theta)$, where $a, b \in R$, determine the values of a and b.

[^1]
DO NOT WRITE ON THIS PAGE
 THIS PAGE WILL NOT BE MARKED

CONTINUE TO THE NEXT PAGE

QUESTION 17 (7 marks)

An object of mass 2 kg is moving with a constant velocity $\left(\mathrm{m} \mathrm{s}^{-1}\right)$ of $\boldsymbol{v}=3 \hat{\boldsymbol{i}}+\hat{\boldsymbol{k}}$.
At an instant, two forces (N), $\boldsymbol{F}_{1}=5 t \hat{\boldsymbol{j}}-3 \hat{\boldsymbol{k}}$ and $\boldsymbol{F}_{2}=-t \hat{\boldsymbol{j}}+\hat{\boldsymbol{k}}$, act simultaneously on the object for t seconds, where $0 \leq t \leq 2$.
Determine the magnitude of the momentum of the object when $t=1$.

Do not write outside this box.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

QUESTION 18 (6 marks)

A particular solution to the differential equation $\frac{d y}{d x}=\frac{x}{\left(x^{2}+1\right) \tan (y)}$, where $x \geq 0$ and $-\frac{\pi}{2}<y \leq 0$, passes through the origin.

Determine this solution in the form $x=f(y)$. Leave your answer in simplified form.
\qquad

Do not write outside this box.
\qquad

QUESTION 19 (6 marks)

Object A is released from the origin with constant velocity, \boldsymbol{v}_{A}, such that its position after t seconds is given by

$$
\boldsymbol{r}_{A}=2 \sqrt{3} t \hat{\boldsymbol{i}}+3 t \hat{\boldsymbol{j}}+2 t \hat{\boldsymbol{k}}, t \geq 0 .
$$

At a later time, object B is released from point $P(3 \sqrt{3}, 6,0)$ and travels towards point $Q(5 \sqrt{3}, 8,4)$ with constant velocity, \boldsymbol{v}_{B}, such that $\left|\boldsymbol{v}_{B}\right|=\sqrt{2}\left|\boldsymbol{v}_{A}\right|$.

Given that objects A and B collide, determine the time between the release of the two objects.
Assume all positions are given in metres and all velocities are given in metres per second.
\qquad

Do not write outside this box.
\qquad

END OF PAPER

Do not write outside this box.

ADDITIONAL PAGE FOR STUDENT RESPONSES

Write the question number you are responding to.
\qquad

Do not write outside this box.

ADDITIONAL PAGE FOR STUDENT RESPONSES

Write the question number you are responding to.
\qquad

Do not write outside this box.

ADDITIONAL PAGE FOR STUDENT RESPONSES

Write the question number you are responding to.
\qquad

Do not write outside this box.

ADDITIONAL PAGE FOR STUDENT RESPONSES

Write the question number you are responding to.
\qquad

Do not write outside this box.

[^0]: Do not write outside this box.

[^1]: Do not write outside this box.

