External assessment 2023

Multiple choice question book

Specialist Mathematics

Paper 1 — Technology-free

General instruction

• Work in this book will not be marked.

Section 1

Instruction

• Respond to these questions in the question and response book.

QUESTION 1

The position of a particle is given by $\mathbf{r} = (t+2)\hat{\mathbf{i}} + t^2\hat{\mathbf{j}}$ for $t \ge 0$.

Determine the corresponding Cartesian equation.

- $(A) \quad y = x^2 4$
- (B) $y = x^2 + 4$
- (C) $y = x^2 4x + 4$
- (D) $y = x^2 + 4x + 4$

QUESTION 2

Consider the proof of the following proposition using mathematical induction.

$$\sum_{r=1}^{n} r(r+1) = \frac{1}{3}n(n+1)(n+2) \ \forall n \in Z^{+}$$

An appropriate assumption statement within the proof is

(A)
$$\sum_{r=1}^{k} k(k+1) = \frac{1}{3}k(k+1)(k+2)$$

(B) $\sum_{r=1}^{k} k(k+1) = \frac{1}{3}n(n+1)(n+2)$

(C)
$$\sum_{r=1}^{k} r(r+1) = \frac{1}{3}k(k+1)(k+2)$$

(D)
$$\sum_{r=1}^{k} r(r+1) = \frac{1}{3}n(n+1)(n+2)$$

QUESTION 3

One solution of $z^{3} - z^{2} - 7z - 2 = 0$ is z = -2.

Which equation could be used to determine the remaining solutions?

- (A) $z^2 3z 1 = 0$
- (B) $z^2 3z + 1 = 0$
- (C) $z^2 z 1 = 0$
- (D) $z^2 z + 1 = 0$

QUESTION 4

The age-specific population distribution of a particular species of animal is shown.

Age (years)	0–1	1–2	2–3	3–4
Female population	94	82	37	6
Breeding rate	0	1.3	0.9	0.2
Survival rate	0.6	0.8	0.4	0

The Leslie matrix based on this data is

	94	82	37	6
(A)	0.6	0	0	0
	0	0.8	0	0
	0	0	0.4	0
	_			_
(B)	1	2	3	4
	1.3	0	0	0
	0	0.9	0	0
	0	0	0.2	0
	_			_
(C)	0.6	0.8	0.4	0
	1.3	0	0	0
	0	0.9	0	0
	0	0	0.2	0
	_			_
(D)	0	1.3	0.9	0.2
	0.6	0	0	0
	0	0.8	0	0
	0	0	0.4	0

QUESTION 5

A confidence interval for a parameter is a range of values within which the

- (A) sample estimate of the parameter always lies.
- (B) sample estimate of the parameter never lies.
- (C) parameter always lies.
- (D) parameter never lies.

QUESTION 6

The shaded region defined as $\{z : |z+2-i| \le 5\} \cap \{z : Re(z) < 1\}, z \in C$ is best represented by

QUESTION 7

The differential equation for which the solution is a logistic equation of the form $y = \frac{a}{b + Ce^{-at}}$ where a, b and C are constants is

(A) $\frac{dy}{dt} = 0.25(1-0.01t)$ (B) $\frac{dy}{dt} = 0.25(1-0.01y)$ (C) $\frac{dy}{dt} = 0.25t(1-0.01t)$

(D)
$$\frac{dy}{dt} = 0.25y(1-0.01y)$$

QUESTION 8

Point A is the centre of a sphere and point B lies on its surface as shown.

The equation of the sphere is

- (A) $x^2 2x + y^2 + z^2 + 2z = 23$
- (B) $x^2 + 2x + y^2 + z^2 2z = 23$
- (C) $x^2 2x + y^2 + z^2 + 2z = 25$
- (D) $x^2 + 2x + y^2 + z^2 2z = 25$

QUESTION 9

The geometric interpretation of a certain system of three equations with no solution is shown.

Given two of the equations are x + y - z = 0.5 and x - y - z = 0.5, the third equation could be

- (A) 2x 2y 2z = 1
- (B) 2x + 2y 2z = 1
- (C) 2x 2y + 2z = 3
- (D) 2x + 2y 2z = 3

QUESTION 10

A random variable is drawn from a population with the distribution shown in the histogram.

A number of samples of size 10 were randomly selected from this distribution and the sample means, \overline{x} , were recorded. The histogram that most likely represents the distribution of the sample means is

© State of Queensland (QCAA) 2023 Licence: https://creativecommons.org/licenses/by/4.0 | Copyright notice: www.qcaa.qld.edu.au/copyright — lists the full terms and conditions, which specify certain exceptions to the licence. | Attribution: © State of Queensland (QCAA) 2023