I					
LUI					School code
School name					
Given name/s					Attach your
Family name					barcode ID label here
External as	sessmen	t 2022			Book of books used
				Q	Question and response book

Specialist Mathematics

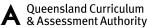
Paper 2 — Technology-active

Time allowed

- Perusal time 5 minutes
- Working time 90 minutes

General instructions

- Answer all questions in this question and response book.
- QCAA-approved calculator permitted.
- QCAA formula book provided.
- Planning paper will not be marked.


Section 1 (10 marks)

• 10 multiple choice questions

Section 2 (50 marks)

• 9 short response questions

Section 1

Instructions

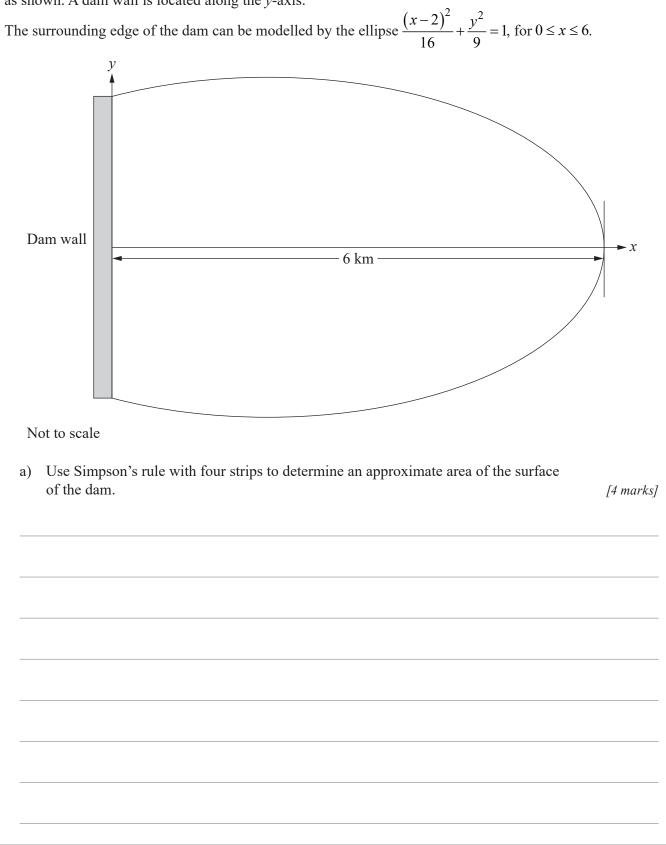
- Choose the best answer for Questions 1–10.
- This section has 10 questions and is worth 10 marks.
- Use a 2B pencil to fill in the A, B, C or D answer bubble completely.
- If you change your mind or make a mistake, use an eraser to remove your response and fill in the new answer bubble completely.

	А	В	С	D
Example:		\bigcirc	\bigcirc	\bigcirc

	А	В	С	D
1.	\bigcirc	\bigcirc	\bigcirc	\bigcirc
2.	\bigcirc	\bigcirc	\bigcirc	\bigcirc
3.	\bigcirc	\bigcirc	\bigcirc	\bigcirc
4.	\bigcirc	\bigcirc	\bigcirc	\bigcirc
5.	\bigcirc	\bigcirc	\bigcirc	\bigcirc
6.	\bigcirc	\bigcirc	\bigcirc	\bigcirc
7.	\bigcirc	\bigcirc	\bigcirc	\bigcirc
8.	\bigcirc	\bigcirc	\bigcirc	\bigcirc
9.	\bigcirc	\bigcirc	\bigcirc	\bigcirc
10.	\bigcirc	\bigcirc	\bigcirc	\bigcirc

Section 2

Instructions


- Write using black or blue pen.
- Questions worth more than one mark require mathematical reasoning and/or working to be shown to support answers.
- If you need more space for a response, use the additional pages at the back of this book.
 - On the additional pages, write the question number you are responding to.
 - Cancel any incorrect response by ruling a single diagonal line through your work.
 - $-\,$ Write the page number of your alternative/additional response, i.e. See page \ldots
 - If you do not do this, your original response will be marked.
- This section has nine questions and is worth 50 marks.

DO NOT WRITE ON THIS PAGE

THIS PAGE WILL NOT BE MARKED

QUESTION 11 (6 marks)

An aerial view of the surface of a dam, 6 km in length, is symmetrically positioned on a Cartesian plane as shown. A dam wall is located along the *y*-axis.

) Evaluate the reasonableness of this approximation.	[2 mark
Evaluate the reasonableness of this approximation.	[2 mark
Evaluate the reasonableness of this approximation.	[2 mark
Evaluate the reasonableness of this approximation.	[2 mark
Evaluate the reasonableness of this approximation.	[2 mark
Evaluate the reasonableness of this approximation.	[2 mark
) Evaluate the reasonableness of this approximation.	[2 mark
) Evaluate the reasonableness of this approximation.	[2 mark
) Evaluate the reasonableness of this approximation.	[2 mark
) Evaluate the reasonableness of this approximation.	[2 mark
Evaluate the reasonableness of this approximation.	[2 mark
Evaluate the reasonableness of this approximation.	[2 mark
Evaluate the reasonableness of this approximation.	[2 mark

QUESTION 12 (5 marks)

A scientist collects data for a species of tree frog in a protected area. Details for the female tree frog population are shown in the table.

Age (years)	0–1	1–2	2–3	3–4
Population in Year 1	150	101	84	62
Birth (breeding) rate	0.4	0.7	0.5	0.1
Survival rate	0.6	0.3	0.2	0

The scientist uses a Leslie matrix model to make predictions about the female tree frog population.

a) State the initial population matrix.

[1 mark]

b) Determine the Leslie matrix.

[1 mark]

A species is considered to be endangered if the female population in a restricted area is predicted to fall to less than 125 in the next 20 years.

c) Determine whether this species of tree frog is considered to be endangered. [3 marks]

QUESTION 13 (5 marks)

An article claims that the mean starting salary of graduates in Australia is currently \$64 800 with a standard deviation of \$4500.

To check the validity of this claim, an employment agent intends to collect data on the starting salaries of a random sample of 360 graduates.

a) Determine the probability that the sample mean starting salary will be between \$64,000 and \$65,000.

[2 marks]

[1 mark]

From the data, the agent calculates a confidence interval for the population mean starting salary of (\$64 589, \$65 811).

b) Determine the sample mean.

c) Comment on the reasonableness of the article's claim based on this confidence interval. [2 marks]

QUESTION 14 (5 marks)

An object is moving in a straight line with an acceleration represented by the differential equation $\frac{dv}{dt} = -(4+v^2)$, where v is the object's velocity (m s⁻¹) over time, t(s), where $t \ge 0$, until it comes to rest. a) Determine the general solution of the differential equation.
[3 marks]

The initial velocity of the object is 1.5 m s^{-1} .

b) Determine the time when the particle comes to rest.

[2 marks]

QUESTION 15 (5 marks)

Consider points A(3, -1, 3) and B(1, 1, 6).

a) Determine \overrightarrow{AB} .

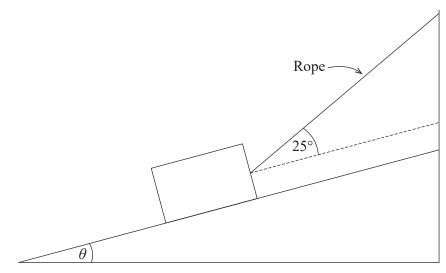
[1 mark]

b) Determine the Cartesian equation of the line that passes through points A and B. [2 marks]

Point A lies on the plane, φ , and \overrightarrow{AB} is perpendicular to this plane.

c) Determine the Cartesian equation of the plane.

[2 marks]


DO NOT WRITE ON THIS PAGE

THIS PAGE WILL NOT BE MARKED

CONTINUE TO THE NEXT PAGE

QUESTION 16 (6 marks)

An object with a mass of 12 kg lies on a frictionless inclined plane. A rope is attached to the object at an angle of 25° above the plane, as shown.

Not to scale

The force of the rope, T N, prevents the object from moving. When the rope is detached, the object moves down the plane with an acceleration of 5.6 m s⁻².

Determine the magnitude of *T*.

QUESTION 17 (6 marks)

The mass of a population of elephants is known to be normally distributed.

A biologist randomly selects a number of elephants from this population and measures their masses. The mean mass of the sample is 5206 kg with a standard deviation of 356 kg.

The biologist uses the data to calculate a 90% confidence interval for the population mean mass of (5159.1, 5252.9) kg.

Determine a 99% confidence interval for the population mean mass based on the same data.

QUESTION 18 (5 marks)

Consider the polynomials $P(z) = z^3 + (i-a)z^2 - 2biz + 3i$ and Q(z) = z - 2i, where $a, b \in R$. Given $\frac{P(z)}{Q(z)}$ has a remainder of a - bi, evaluate the reasonableness that (z - (a - bi)) is a factor of P(z).

QUESTION 19 (7 marks)

A research organisation plans to use a drone to drop a scientific instrument vertically from a stationary position above the ocean surface. The acceleration $(m s^{-2})$ of the falling instrument can be modelled by 9.8-0.1v, where v is its velocity $(m s^{-1})$.

In order for the instrument sensors to activate, its speed as it hits the ocean surface must reach at least 20 m s^{-1} . However, if it hits with a speed above 50 m s^{-1} , the sensors will be damaged.

Determine the range of the drone's flying height above the ocean surface to ensure that the sensors are activated but not damaged.

END OF PAPER	

ADDITIONAL PAGE	FOR	STUDENT	RESPONSES
		N I O D III (I	

ADDITIONAL PAGE FOR STUDENT RESPONSES

Do	not	write	outside	this	box.
----	-----	-------	---------	------	------

ADDITIONAL PAGE	FOR	STUDENT	RESPONSES
		N I O D III (I	

ADDITIONAL PAGE FOR STUDENT RESPONSES

Do	not	write	outside	this	box.
----	-----	-------	---------	------	------

© State of Queensland (QCAA) 2022

Licence: https://creativecommons.org/licenses/by/4.0 | Copyright notice: www.qcaa.qld.edu.au/copyright — lists the full terms and conditions, which specify certain exceptions to the licence. | Attribution: © State of Queensland (QCAA) 2022