Multiple choice question book

Specialist Mathematics

Paper 2 — Technology-active

General instruction

• Work in this book will not be marked.

Section 1

QUESTION 1

A solution of the equation $z^2 = ai$, where $a \in R$, is z = -2 - 2i.

The other solution is

- (A) -8i
- (B) -2 + 2i
- (C) 2 + 2i
- (D) 8*i*

QUESTION 2

The win/draw/loss results after a netball competition involving five teams is represented in matrix M.

Key: Team P drew with Team Q, defeated Team R and Team T, and lost to Team S

The model $\mathbf{M} + \mathbf{M^2} + \mathbf{M^3}$ is used to rank the teams. The final positions from first to fifth are

- (A) S, Q, P, R, T
- (B) S, Q, P, T, R
- (C) S, P, Q, T, R
- (D) S, P, Q, R, T

QUESTION 3

Determine the solution of the differential equation $\frac{dy}{dx} = \frac{\sin(2x)}{\cos(2x)}$ given y = 0 when $x = \frac{\pi}{5}$.

(A)
$$y = -2\ln|\cos(2x)| - 2.35$$

(B)
$$y = -2 \ln |\cos(2x)| + 2.35$$

(C)
$$y = -\frac{1}{2} \ln |\cos(2x)| - 0.59$$

(D)
$$y = -\frac{1}{2} \ln |\cos(2x)| + 0.59$$

QUESTION 4

The time taken for students to answer questions in a class is assumed to be a random variable X with an exponential distribution that has the probability density function

$$f(x) = \begin{cases} \lambda e^{-\lambda x}, & x \ge 0\\ 0, & \text{otherwise} \end{cases}$$

The mean of *X* is $\frac{1}{\lambda}$.

The mean length of time taken for students to answer questions in this class is 15 seconds.

The probability that the next question in this class is answered between 8 seconds and 17 seconds is

- (A) 0.05
- (B) 0.12
- (C) 0.22
- (D) 0.26

QUESTION 5

A random sample of the petrol price per litre at 50 petrol stations produced a sample mean of \$1.52 and a standard deviation of \$0.14.

Based on this sample and using a z-value of 1.5, an approximate confidence interval for μ is

- (A) (\$1.47, \$1.57)
- (B) (\$1.48, \$1.56)
- (C) (\$1.49, \$1.55)
- (D) (\$1.50, \$1.54)

QUESTION 6

A 4 kg object moves in a straight line over time, t(s), where $0 \le t \le 5$ with velocity $v = 9 + 8t - t^2 \text{ (m s}^{-1)}$. Determine the momentum of the object when t = 3.

- (A) 24 kg m s^{-1}
- (B) 27 kg m s^{-1}
- (C) 96 kg m s^{-1}
- (D) 100 kg m s^{-1}

QUESTION 7

Given $\mathbf{a} = (3n+2)\hat{\mathbf{i}} + 2\hat{\mathbf{j}}$, $\mathbf{b} = (n-2)\hat{\mathbf{j}}$ and $\mathbf{a} \times \mathbf{b} = (1-2n)\hat{\mathbf{k}}$, the possible values of n are

- (A) $-5 \text{ and } \frac{1}{3}$
- (B) $-1 \text{ and } \frac{5}{3}$
- (C) 1 and $-\frac{5}{3}$
- (D) 5 and $-\frac{1}{3}$

QUESTION 8

Determine the gradient of the tangent to the curve $y^2 - 3x = 5$ at the point $(1, 2\sqrt{2})$.

- (A) 0.41
- (B) 0.53
- (C) 1.06
- (D) 8.49

QUESTION 9

Consider the matrix equation.

$$\mathbf{X} \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{bmatrix}$$

Matrix X is

(A)
$$\begin{bmatrix} 0 & 1 & 1 \\ 1 & -1 & 2 \\ -1 & 0 & 2 \end{bmatrix}$$

(B)
$$\begin{bmatrix} 0 & 1 & -1 \\ 1 & -1 & 0 \\ 1 & 2 & 2 \end{bmatrix}$$

(C)
$$\begin{bmatrix} 2 & 2 & 1 \\ 4 & 3 & 3 \\ 5 & 5 & 5 \end{bmatrix}$$

(D)
$$\begin{bmatrix} 2 & 4 & 5 \\ 2 & 3 & 5 \\ 1 & 3 & 5 \end{bmatrix}$$

QUESTION 10

In a town, the mean number of residents per household is 3.79 people with a standard deviation of 1.47 people. Using a random sample of 45 households from the town, determine the probability that the mean number of residents per household will be more than 4.

- (A) 0.17
- (B) 0.33
- (C) 0.83
- (D) 0.96

THIS PAGE IS INTENTIONALLY BLANK

THIS PAGE IS INTENTIONALLY BLANK

