LUI

School code $\square$

School name $\square$
$\square$


External assessment 2022


## Question and response book

## Specialist Mathematics

## Paper 1 — Technology-free

## Time allowed

- Perusal time - 5 minutes
- Working time - 90 minutes


## General instructions

- Answer all questions in this question and response book.
- Calculators are not permitted.
- QCAA formula book provided.
- Planning paper will not be marked.


## Section 1 (10 marks)

- 10 multiple choice questions


## Section 2 (50 marks)

- 9 short response questions


## Section 1

## Instructions

- Choose the best answer for Questions 1-10.
- This section has 10 questions and is worth 10 marks.
- Use a 2B pencil to fill in the A, B, C or D answer bubble completely.
- If you change your mind or make a mistake, use an eraser to remove your response and fill in the new answer bubble completely.


[^0]
## Section 2

## Instructions

- Write using black or blue pen.
- Questions worth more than one mark require mathematical reasoning and/or working to be shown to support answers.
- If you need more space for a response, use the additional pages at the back of this book.
- On the additional pages, write the question number you are responding to.
- Cancel any incorrect response by ruling a single diagonal line through your work.
- Write the page number of your alternative/additional response, i.e. See page ...
- If you do not do this, your original response will be marked.
- This section has nine questions and is worth 50 marks.


## DO NOT WRITE ON THIS PAGE

THIS PAGE WILL NOT BE MARKED

Do not write outside this box.

## QUESTION 11 (6 marks)

The position vector of a particle, $\boldsymbol{r}_{1}(\mathrm{~cm})$, over time, $t(\mathrm{~s})$, is given by

$$
\boldsymbol{r}_{1}(t)=(2 t+1) \hat{\boldsymbol{i}}+(t+3) \hat{\boldsymbol{j}}-(2 t-3) \hat{\boldsymbol{k}}
$$

a) Determine the velocity vector of the particle.
[1 mark]
$\qquad$
$\qquad$
$\qquad$
$\qquad$
b) Determine the time when the position vector of the particle is perpendicular to its velocity vector.
$\qquad$

Do not write outside this box.

The position vector of a second particle, $\boldsymbol{r}_{2}(\mathrm{~cm})$, over time, $t(\mathrm{~s})$, is given by

$$
\boldsymbol{r}_{2}(t)=(16-4 t) \hat{\boldsymbol{i}}-(3 t-13) \hat{\boldsymbol{j}}+2 \hat{\boldsymbol{k}}
$$

c) Determine whether the two particles collide.
$\qquad$

Do not write outside this box.

## QUESTION 12 (6 marks)

Given $z_{1}=a+b i, z_{2}=c+d i \forall a, b, c, d \in R$, and $z_{2} \neq 0$, prove the identity

$$
\left|\frac{z_{1}}{z_{2}}\right|=\frac{\left|z_{1}\right|}{\left|z_{2}\right|}
$$

Do not write outside this box.
$\square$
$\qquad$

## QUESTION 13 (6 marks)

a) Use partial fractions to determine $\int \frac{22}{(2 x-3)(x+4)} d x \quad$ [4 marks]
$\qquad$

Do not write outside this box.
b) Use the result from Question 13a) to determine $\int_{-3}^{0} \frac{22}{(2 x-3)(x+4)} d x$

Express your answer in simplest form.
$\qquad$
$\qquad$ Do not write outside this box.

## QUESTION 14 (4 marks)

The slope field for the differential equation $\frac{d y}{d x}=\frac{-0.5(y-4)}{x}, x \neq 0$ using $-6 \leq x \leq 6$ and $-6 \leq y \leq 6$
is shown.

a) Determine the value of the slope at point A .
[2 marks]
$\qquad$
$\qquad$
$\qquad$
$\qquad$
b) Use the slope field to sketch the solution curve for $\frac{d y}{d x}=\frac{-0.5(y-4)}{x}$ given that when $x=-6, y=3.5$

Note: If you make a mistake in the slope field, cancel it by ruling a single diagonal line through your work and use the additional response space on page 21 of this question and response book.

## QUESTION 15 (4 marks)

Consider the equation $z^{3}=1$ where $z \in C$.
a) Sketch the solutions to $z^{3}=1$ on the Argand diagram.


Note: If you make a mistake in the Argand diagram, cancel it by ruling a single diagonal line through your work and use the additional response space on page 22 of this question and response book.

The solutions to $z^{3}=1$ can be expressed in the form $z=a+b i$, where $a, b \in R$.
b) Determine the largest possible positive value of $a b$.
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

Do not write outside this box.

## QUESTION 16 (7 marks)

Consider this system of equations that corresponds to three planes.

$$
\begin{aligned}
& x+5 y=1+2 z \\
& x+z=3 y+3 \\
& 8 y-\lambda=3 z
\end{aligned}
$$

a) Use a Gaussian technique to determine the value of $\lambda$ for which this system of equations has infinitely many solutions.
$\qquad$
Do not write outside this box.
b) Use the result from Question 16a) to determine the infinitely many solutions. Express your answer in the form of a vector equation of a line.
$\qquad$

Do not write outside this box.

## QUESTION 17 (5 marks)

The region between the $x$-axis and the curve of the function $y=1+\sin (2 x)$ for $0 \leq x \leq \frac{\pi}{2}$ is rotated about the $x$-axis to form a solid of revolution.

Determine the volume of this solid. Express your answer in simplest form.
$\qquad$

Do not write outside this box.
$\qquad$

## QUESTION 18 (5 marks)

It is proposed that the following expression is divisible by $(1+\operatorname{cis}(\theta))$ for $n \in Z^{+},(1+\operatorname{cis}(\theta)) \neq 0$.

$$
\sum_{r=0}^{2 n+1} \operatorname{cis}(r \theta)
$$

Evaluate the reasonableness of the proposition.
$\qquad$

Do not write outside this box.
$\square$
$\qquad$

## QUESTION 19 (7 marks)

The function $f(x)$ passes through the origin.
The gradient function of $f(x)$ is defined as $g(x)=e^{x} \sin ^{-1}\left(e^{x}\right)$.
Determine $f(x)$.
$\qquad$

Do not write outside this box.

$\qquad$

END OF PAPER

Do not write outside this box.

## ADDITIONAL PAGE FOR STUDENT RESPONSES

Write the question number you are responding to.
$\qquad$

Do not write outside this box.

## ADDITIONAL PAGE FOR STUDENT RESPONSES

Write the question number you are responding to.
$\qquad$

Do not write outside this box.

## ADDITIONAL RESPONSE SPACE FOR QUESTION 14b)

If you want this slope field to be marked, rule a single diagonal line through the slope field on page 9 .


## ADDITIONAL RESPONSE SPACE FOR QUESTION 15a)

If you want this Argand diagram to be marked, rule a single diagonal line through the Argand diagram on page 10 .



[^0]:    Do not write outside this box.

