

Specialist Mathematics

Paper 1 — Technology-free

Time allowed

- Perusal time 5 minutes
- Working time 90 minutes

General instructions

• Answer all questions in this question and

Section 1 (10 marks)

• 10 multiple choice questions

Section 2 (50 marks)

• 9 short response questions

response book.

- Calculators are **not** permitted.
- QCAA formula book provided.
- Planning paper will not be marked.

Section 1

Instructions

- Choose the best answer for Questions 1–10.
- This section has 10 questions and is worth 10 marks.
- Use a 2B pencil to fill in the A, B, C or D answer bubble completely.
- If you change your mind or make a mistake, use an eraser to remove your response and fill in the new answer bubble completely.

Do not write outside this box.

Section 2

Instructions

- Write using black or blue pen.
- Questions worth more than one mark require mathematical reasoning and/or working to be shown to support answers.
- If you need more space for a response, use the additional pages at the back of this book.
 - On the additional pages, write the question number you are responding to.
 - Cancel any incorrect response by ruling a single diagonal line through your work.
 - Write the page number of your alternative/additional response, i.e. See page ...
 - If you do not do this, your original response will be marked.
- This section has nine questions and is worth 50 marks.

DO NOT WRITE ON THIS PAGE

THIS PAGE WILL NOT BE MARKED

Do not write outside this box.

QUESTION 11 (6 marks)

The position vector of a particle, $r_1(cm)$, over time, t(s), is given by

$$\mathbf{r}_{1}(t) = (2t+1)\hat{\mathbf{i}} + (t+3)\hat{\mathbf{j}} - (2t-3)\hat{\mathbf{k}}$$

a) Determine the velocity vector of the particle.

b) Determine the time when the position vector of the particle is perpendicular to its velocity vector.

[2 marks]

[1 mark]

Do not write outside this box.

1	osmon vector of a second particle, $r_2(\text{cm})$, over time, $r(s)$, is given by	
	$\boldsymbol{r}_{2}(t) = (16 - 4t)\hat{\boldsymbol{i}} - (3t - 13)\hat{\boldsymbol{j}} + 2\hat{\boldsymbol{k}}$	
c)	Determine whether the two particles collide.	[3 marks]

QUESTION 12 (6 marks)

Given $z_1 = a + bi$, $z_2 = c + di \forall a, b, c, d \in R$, and $z_2 \neq 0$, prove the identity

$$\left|\frac{z_1}{z_2}\right| = \frac{|z_1|}{|z_2|}$$

QUESTION 13 (6 marks) a) Use partial fractions to determine $\int \frac{22}{(2x-3)(x+4)} dx$	[4 marks]

Do	not	write	outside	this	box.	

b) Use the result from Question 13a) to determine $\int_{-3}^{0} \frac{22}{(2x-3)(x+4)} dx$ Express your answer in simplest form. [2 marks]

QUESTION 14 (4 marks)

The slope field for the differential equation $\frac{dy}{dx} = \frac{-0.5(y-4)}{x}$, $x \neq 0$ using $-6 \le x \le 6$ and $-6 \le y \le 6$ is shown.

a) Determine the value of the slope at point A.

[2 marks]

b) Use the slope field to sketch the solution curve for
$$\frac{dy}{dx} = \frac{-0.5(y-4)}{x}$$
 given that when $x = -6$, $y = 3.5$ [2 marks]

Note: If you make a mistake in the slope field, cancel it by ruling a single diagonal line through your work and use the additional response space on page 21 of this question and response book.

Do not write outside this box.

QUESTION 15 (4 marks)

Consider the equation $z^3 = 1$ where $z \in C$.

a) Sketch the solutions to $z^3 = 1$ on the Argand diagram.

Note: If you make a mistake in the Argand diagram, cancel it by ruling a single diagonal line through your work and use the additional response space on page 22 of this question and response book.

The solutions to $z^3 = 1$ can be expressed in the form z = a + bi, where $a, b \in R$.

b) Determine the largest possible positive value of *ab*.

[2 marks]

[2 marks]

Do not write outside this box.

QUESTION 16 (7 marks)

Consider this system of equations that corresponds to three planes.

$$x + 5y = 1 + 2z$$
$$x + z = 3y + 3$$
$$8y - \lambda = 3z$$

a) Use a Gaussian technique to determine the value of λ for which this system of equations has infinitely many solutions. [4 marks]

5) [Use the result from Question 16a) to determine the infinitely many solutions. Express your answer in the form of a vector equation of a line.	[3 mark.

QUESTION 17 (5 marks)

The region between the *x*-axis and the curve of the function $y = 1 + \sin(2x)$ for $0 \le x \le \frac{\pi}{2}$ is rotated about the *x*-axis to form a solid of revolution.

Determine the volume of this solid. Express your answer in simplest form.

	_
	_
	_
	_
	_
	_
	_

QUESTION 18 (5 marks)

It is proposed that the following expression is divisible by $(1 + \operatorname{cis}(\theta))$ for $n \in Z^+$, $(1 + \operatorname{cis}(\theta)) \neq 0$.

$$\sum_{r=0}^{2n+1} \operatorname{cis}(r\theta)$$

Evaluate the reasonableness of the proposition.

QUESTION 19 (7 marks)

The function f(x) passes through the origin.

The gradient function of f(x) is defined as $g(x) = e^x \sin^{-1}(e^x)$. Determine f(x).

END OF PAPER

Do not write outside this box.

ADDITIONAL PAGE FOR STUDENT RESPONSES

Write the question number you are responding to.

ADDITIONAL PAGE FOR STUDENT RESPONSES

Write the question number you are responding to.

Do not write outside this box.

ADDITIONAL RESPONSE SPACE FOR QUESTION 14b)

If you want this slope field to be marked, rule a single diagonal line through the slope field on page 9.

ADDITIONAL RESPONSE SPACE FOR QUESTION 15a)

If you want this Argand diagram to be marked, rule a single diagonal line through the Argand diagram on page 10.

Do not write outside this box.

U

CC © State of Queensland (QCAA) 2022

Licence: https://creativecommons.org/licenses/by/4.0 | Copyright notice: www.qcaa.qld.edu.au/copyright — lists the full terms and conditions, which specify certain exceptions to the licence. | Attribution: © State of Queensland (QCAA) 2022