Specialist Mathematics 2019 v1.2

IA3 sample marking scheme

August 2019

Examination (15%)

This sample has been compiled by the QCAA to model one possible approach to allocating marks in an examination. It matches the examination mark allocations as specified in the syllabus (~ 60% simple familiar, ~ 20% complex familiar and ~ 20% complex unfamiliar) and ensures that all assessment objectives are assessed.

Assessment objectives

This assessment instrument is used to determine student achievement in the following objectives:

- 1. select, recall and use facts, rules, definitions and procedures drawn from all Unit 4 topics
- 2. comprehend mathematical concepts and techniques drawn from all Unit 4 topics
- 3. communicate using mathematical, statistical and everyday language and conventions
- 4. evaluate the reasonableness of solutions
- 5. justify procedures and decisions, and prove propositions by explaining mathematical reasoning
- 6. solve problems by applying mathematical concepts and techniques drawn from all Unit 4 topics.

Instrument-specific marking guide (ISMG)

Criterion: Foundational knowledge and problem-solving

Assessment objectives

- 1. select, recall and use facts, rules, definitions and procedures drawn from all Unit 4 topics
- 2. comprehend mathematical concepts and techniques drawn from all Unit 4 topics
- 3. communicate using mathematical and everyday language and conventions
- 4. evaluate the reasonableness of solutions
- 5. justify procedures and decisions by explaining mathematical reasoning
- 6. solve problems by applying mathematical concepts and techniques drawn from all Unit 4 topics.

The student work has the following characteristics:	Cut-off	Marks
• consistently correct selection, recall and use of facts, rules, definitions and procedures; authoritative and accurate command of mathematical concepts and techniques; astute evaluation of the reasonableness of solutions and use of	> 93%	15
mathematical reasoning to correctly justify procedures and decisions, and prove propositions; and fluent application of mathematical concepts and techniques to solve problems in a comprehensive range of simple familiar, complex familiar and complex unfamiliar situations.	> 87%	14
 correct selection, recall and use of facts, rules, definitions and procedures; comprehension and clear communication of mathematical concepts and techniques; considered evaluation of the reasonableness of solutions and use of 	> 80%	13
mathematical reasoning to justify procedures and decisions, and prove propositions; and proficient application of mathematical concepts and techniques to solve problems in simple familiar, complex familiar and complex unfamiliar situations.	> 73%	12
 thorough selection, recall and use of facts, rules, definitions and procedures; comprehension and communication of mathematical concepts and techniques; evaluation of the reasonableness of solutions and use of mathematical reasoning 	> 67%	11
to justify procedures and decisions, and prove propositions; and application of mathematical concepts and techniques to solve problems in simple familiar and complex familiar situations.	> 60%	10
 selection, recall and use of facts, rules, definitions and procedures; comprehension and communication of mathematical concepts and techniques; evaluation of the reasonableness of some solutions using mathematical reasoning; and application 	> 53%	9
of mathematical concepts and techniques to solve problems in simple familiar situations.	> 47%	8
 some selection, recall and use of facts, rules, definitions and procedures; basic comprehension and communication of mathematical concepts and techniques; 	> 40%	7
inconsistent evaluation of the reasonableness of solutions using mathematical reasoning; and inconsistent application of mathematical concepts and techniques.	> 33%	6
• infrequent selection, recall and use of facts, rules, definitions and procedures; basic comprehension and communication of some mathematical concepts and	> 27%	5
techniques; some description of the reasonableness of solutions; and infrequent application of mathematical concepts and techniques.	> 20%	4
• isolated selection, recall and use of facts, rules, definitions and procedures; partial	> 13%	3

The student work has the following characteristics:	Cut-off	Marks
comprehension and communication of rudimentary mathematical concepts and techniques; superficial description of the reasonableness of solutions; and disjointed application of mathematical concepts and techniques.	> 7%	2
• isolated and inaccurate selection, recall and use of facts, rules, definitions and procedures; disjointed and unclear communication of mathematical concepts and techniques; and illogical description of the reasonableness of solutions.	> 0%	1
does not satisfy any of the descriptors above.		0

Task

See the sample assessment instrument for IA3: Examination — short response (15%) available on the QCAA Portal.

Sample marking scheme

Criterion	Marks allocated	Result
Foundational knowledge and problem-solving Assessment objectives 1, 2, 3, 4, 5 and 6	15	
Total	15	

The annotations are written descriptions of the expected response for each question and are related to the assessment objectives.

Note: $\checkmark = \frac{1}{2}$ mark	Paper	1 (teo	chnol	ogy-f	ree)		
 recall and use: appropriate setup of substitution ✓ substitution into the integral ✓ simplification of integrand ✓ select appropriate antiderivative rule ✓ recall process to express antiderivative in terms of <i>x</i> (for any constant value <i>c</i>) ✓ communicate by organising information using mathematical terminology, symbols and conventions ✓ 	Question Let $u = x^2 - \frac{du}{dx} = 2x$ $\int 2xe^{x^2 + 3} dx$ Question a. Giv	$\int e^{u} 1 (3 1)$ $f(3 $	marks) $e^u dx \checkmark$ $u \checkmark$ + c \checkmark marks) - y	SF SF			2.
	у	2	1	0	-1	-2	procedure to sketch the slope field by
	$\frac{dy}{dx}$	-1	0	1	2	3	gradient across the range of $-2 \le y \le 2$ (using table or
							otherwise) ✓ ✓ ✓

Sketch of slope field $\checkmark \checkmark \checkmark \checkmark \checkmark \checkmark$

b. Solution curve from (-1, -2) (see green curve) $\checkmark \checkmark$

Question 3 (3, 2 marks) SF

a. Using integration by parts to find $\int 4x \ln(x) dx$ Let $u = \ln(x) \frac{dv}{dx} = 4x$

 $\frac{du}{dx} = \frac{1}{x} \checkmark v = 2x^2 \checkmark$ $\int u \frac{dv}{dx} dx = uv - \int v \frac{du}{dx} dx$ $\int \ln(x) 4x dx = 2x^2 \ln(x) - \int 2x^2 \frac{1}{x} dx \checkmark \checkmark$ $= 2x^2 \ln(x) - \int 2x dx$ $= 2x^2 \ln(x) - x^2 + c \checkmark$ Shaded area = $\int_1^e 4x \ln(x) dx$

b. Shaded area =
$$\int_{1}^{e} 4x \ln(x) dx$$

= $[2x^{2} \ln(x) - x^{2}]_{1}^{e} \checkmark$
= $(2e^{2} \ln(e) - e^{2}) - (0 - 1)\checkmark$
= $(2e^{2} - e^{2} + 1)$
= $e^{2} + 1\checkmark$

Question 4 (5 marks) SF

Volume of revolution
$$= \pi \int_{a}^{b} y^{2} dx$$

 $= \pi \int_{0}^{\frac{\pi}{4}} (\cos(x))^{2} dx \checkmark$
 $= \pi \int_{0}^{\frac{\pi}{4}} \cos^{2}(x) dx$
 $= \frac{\pi}{2} \int_{0}^{\frac{\pi}{4}} (1 + \cos(2x)) dx \checkmark$

communicate by accurately presenting information in graphical form $\sqrt{\sqrt{\sqrt{3}}}$

sketch an appropriate solution curve (allow *x*-intercept tolerance of ± 0.5) $\checkmark \checkmark$

4.

select and use:

- rule to find the volume of revolution of the given function about the *x*-axis
- appropriate identity to find integral √√

recall procedure to:

 find antiderivatives of each integrand function ✓ ✓

3a.

comprehend the need to use integration by parts

select and use procedure to integrate function

√√√√√

3b.

- recall procedure to:
- substitute limits of integration ✓ ✓
- simplify to required result ✓

communicate by organising information using mathematical terminology, symbols, conventions and everyday language

 substitute limits of integration ✓

 recall exact trigonometric values ✓

simplify result ✓
 communicate by

organising information using mathematical terminology, symbols, conventions √√

11

5.

select appropriate rule ✓

comprehend:

- to find derivative of V with respect to r ✓
- the definition of rate of change of r with respect to t

recall procedure to:

- correctly substitute into the chain rule to find the derivative of V with respect to t √√
- correctly find the rate of increase of the volume at r = 5 ✓

communicate by organising using mathematical terminology (suitable units), conventions and everyday language Question 5 (4 marks) SF $V = \frac{4}{3}\pi r^{3} \checkmark (r \ge 4)$ $\therefore \frac{dv}{dr} = 4\pi r^{2} \checkmark$ Given $\frac{dr}{dt} = 3 \checkmark (cm/s)$ Using chain rule: $\frac{dv}{dt} = \frac{dv}{dr} \cdot \frac{dr}{dt}$ $= 4\pi r^{2} \cdot 3 \checkmark$ $= 12\pi r^{2} \checkmark$ When r = 5 $\frac{dv}{dt} = 12\pi \cdot 5^{2}$ $= 300\pi cm^{3}/minute \checkmark$ Given $v(x) = 9 + x^{2}$

 $=\frac{\pi}{2}\left[x+\frac{1}{2}\sin(2x)\right]_{0}^{\frac{\pi}{4}}$

 $=\frac{\pi}{2}\left[\frac{\pi}{4}+\frac{1}{2}\right]$ \checkmark

 $=\frac{\pi(\pi+2)}{8}$ \checkmark (units³)

 $= \frac{\pi}{2} \left[\left(\frac{\pi}{4} + \frac{1}{2} \sin\left(\frac{\pi}{2}\right) \right) - \left(0 + \frac{1}{2} \sin(0) \right) \right] \checkmark$

 $\therefore \frac{dx}{dt} = 9 + x^2 \checkmark$

Using separation of variables:

$$\frac{dx}{9+x^2} = dt \checkmark$$

$$\int \frac{1}{3^2 + x^2} dx = \int 1 dt \checkmark$$

$$\frac{1}{3} \tan^{-1} \left(\frac{x}{3}\right) = t + c \checkmark \checkmark$$
iven $x = -3$ when $t = 0$

$$\frac{1}{3} \tan^{-1}(-1) = 0 + c$$

$$c = \frac{1}{3} \times \left(-\frac{\pi}{4}\right) \checkmark$$

$$c = \frac{-\pi}{12} \checkmark$$

6.

 $\checkmark\checkmark$

justify procedures and decisions by explaining mathematical reasoning

solve problem by applying:

- the velocity relationship $v = \frac{dx}{dt} \checkmark$
- separation of variables procedure for solving differential, firstorder equation

 a suitable antiderivative of integrand ✓✓

 $\therefore \frac{1}{3} \tan^{-1}\left(\frac{x}{3}\right) = t - \frac{\pi}{12} \checkmark$ solve problem by applying: boundary $\therefore x = 3\tan\left(3t - \frac{\pi}{4}\right)$ conditions to determine the constant of integration </ When $t = \frac{\pi}{12}$ • substitution to find displacement $x = 3 \tan \left(3 \left(\frac{\pi}{12} \right) - \frac{\pi}{4} \right)$ as a function of time √ $= 3 \tan(0) \checkmark$ = 0The particle's position at $t = \frac{\pi}{12}$ is confirmed at the origin. evaluate reasonableness of solution √√ Question 7 (4, 5 marks) CF, CU Let R and P represent motion associated with the rock and the particle: Assuming downwards is negative: a. Consider the motion of the rock: 7a. justify procedures $a_{R} = -10$ and decisions by explaining $v_{R} = \int -10dt = -10t + C$ mathematical reasoning solve problem by $v_{R}(0) = 0 = C$ finding: • v for rock and $\therefore v_R = -10t \checkmark$ particle √√ $x_R = \int -10t \, dt = -5t^2 + C$ Assuming origin is at ground level: $x_R(0) = 20 = C$ • x for rock and particle √√ $\therefore x_R = -5t^2 + 20 \quad .(1) \quad \checkmark$ Consider the motion of the particle: $a_{P} = -10$ $v_P = \int -10 \, dt = -10t + c$ $v_{P}(0) = 12 = c$ $\therefore v_{\rm P} = -10t + 12 \checkmark$ $x_P = \int (-10t + 12) \ dt = -5t^2 + 12t + c$ $x_P(0) = 0 = c$ $\therefore x_P(t) = -5t^2 + 12t \quad \checkmark$

solve problem by finding:

 the meeting time using given same position information √√

evaluate reasonableness of estimation by determining actual meeting position above the ground $\checkmark \checkmark$

7b.

justify procedures and decisions by explaining mathematical reasoning, by:

- making connection that the position model of the rock is unchanged ✓
- recognising that the position of the rock must be 10 (m) ✓
- finding the corresponding time ✓
- solve problem by:
- refining the position model for the particle √√
- making connection with meeting time and position of the rock and particle
- using the common meeting time to find the initial velocity of the particle ✓ as an exact value √√

The rock and particle are at the same position when

 $x_{R}(t) = x_{p}(t):$ $-5t^{2} + 20 = -5t^{2} + 12t \checkmark$ $t = \frac{5}{3} \le \checkmark$ Substituting into (1) to find the meeting position: $x_{R}\left(\frac{5}{3}\right) = -5\left(\frac{5}{3}\right)^{2} + 20 \checkmark$ $= -\frac{125}{9} + 20$ $= -\frac{125}{9} + \frac{180}{9}$ $= \frac{55}{9}$ $= 6\frac{1}{2} \text{ m}$

The estimation of 10 m was not reasonable. ✓

- b. Need to find the launch speed of the particle so that it meets the rock at 10 m above the ground.
 - $\therefore x_R = x_P = 10$

The position model of the rock is still effective: \checkmark

 $\therefore x_R = -5t^2 + 20 = 10$ \checkmark

 $-10 = -5t^2$

 $\therefore t = \sqrt{2} \checkmark (t > 0)$

So, the rock and particle would meet at $t = \sqrt{2}$ s.

Refining the position model of the particle:

New meeting height will be $x_P = -5t^2 + v_0t$ where v_0 is the new launch speed of the particle. $\checkmark\checkmark$

Require $x_P = 10$

$$\therefore 10 = -5(\sqrt{2})^2 + v_0 \times (\sqrt{2}) \quad \checkmark \checkmark$$

$$\therefore -10 + \sqrt{2}v_0 = 10$$

 $\sqrt{2}v_0=20\checkmark$

$$\therefore v_0 = \frac{20}{\sqrt{2}} = \frac{20\sqrt{2}}{2} = 10\sqrt{2} \quad \checkmark \checkmark$$

The particle must be launched at $10\sqrt{2}$ m s⁻¹.

8.

- recall and use
- the probability distribution function by stating the appropriate integral using the correct lower and upper limits
- technology to find the required probability ✓✓

communicate the result as required $\checkmark \checkmark$

9a.

select and use rules to calculate both sample mean parameters $\checkmark \checkmark \checkmark \checkmark$

9b.

communicate an understanding of the central limit theorem using everyday language ✓

recall procedure to find:

- the required probability using technology (or otherwise) √√√√
- the number expected in 50 samples ✓✓

communicate the result as an integer value $\checkmark \checkmark$

Paper 2 (technology-active)

$$P(t < 10) = \int_0^{10} 0.04 e^{-0.04t} dt \, \checkmark \checkmark \checkmark \checkmark$$

 $= 0.32968 \checkmark \checkmark$ (using GDC)

There is a 33% chance. $\checkmark\checkmark$

Question 9 (1.5, 4.5 marks) SF

a. $\mu_{\bar{X}} = \mu = 280\ 000 \checkmark$ $\sigma_{\bar{X}} = \frac{\sigma}{\sqrt{n}} = \frac{80\ 000}{\sqrt{200}} = 5656.85 \checkmark\checkmark$

b. Since n > 30, an approximation to the normal distribution can be used. \checkmark

Using GDC (with the above statistics):

 $P(\bar{X} > 290\ 000) = 0.0386 \quad \checkmark \checkmark \checkmark \checkmark$

Expected number = np

 $= 50 \times 0.03856$

= 1.928 🗸

≈ 2 ✓✓

Question 10 (4 marks) SF

Since n > 30, an approximation to the normal distribution can be used. \checkmark

Given a normal distribution with $\bar{x} = 1280$, s = 125. \checkmark

Confidence interval is $\left(\bar{x} - z \frac{s}{\sqrt{n}}, \bar{x} + z \frac{s}{\sqrt{n}}\right)$

Using GDC for n = 100 to find a 99% confidence interval \Rightarrow (\$1247.80, \$1312.20) $\checkmark \checkmark \checkmark \checkmark$

Since the suggested mean $\mu = \$1200$ lies outside of the 99% confidence interval, the union's claim is not valid based on this sample data. $\checkmark\checkmark$

10.

communicate an understanding of the central limit theorem using everyday language

recognise and select both sample mean parameters ✓

use an appropriate procedure to determine the required confidence interval $\checkmark \checkmark \checkmark \checkmark$

evaluate the reasonableness of the claim $\checkmark \checkmark$

11. Question 11 (4 marks) SF recall and use the Given $f(x) = \frac{\ln(x+0.1)}{2.1} - x + 7.1$ following procedures related to Simpson's rule: Using 4 strips for $0 \le x \le 8 \Rightarrow w = 2 \checkmark$ • find strip width ✓ • find suitable x $x_0 = 0, x_1 = 2, x_2 = 4, x_3 = 6, x_4 = 8 \checkmark$ values √ • use technology to $f(0) \approx 6.0035$ calculate corresponding f(x) values $\checkmark\checkmark$ $f(2) \approx 5.4533$ · recall Simpson's rule √ $f(4) \approx 3.7719$ • substitute into rule correctly √√ $f(6) \approx 1.9611$ · calculate the approximate area $f(8) \approx 0.0961 \quad \checkmark \checkmark$ Area $\approx \frac{w}{3} [f(x_0) + f(x_n) + 4[f(x_1) + \dots + f(x_{n-1})] + 2[f(x_2) + \dots + f(x_{n-2})]] \checkmark$ $\approx \frac{2}{3} \left[6.0035 + 0.0961 + 4 \left[5.4533 + 1.9611 \right] + \right]$ 2[3,7719]] ✓✓ $\approx 28.8673 \checkmark (m^2)$ 12. Question 12 (4 marks) CF justify procedures by explaining $\mu_{\bar{X}} = \mu = 17.3$ mathematical reasoning $\sigma_{\bar{X}} = \frac{\sigma}{\sqrt{n}} = \frac{3.1}{\sqrt{n}} \checkmark$ solve problem by: · establishing the appropriate \overline{X} = mean luggage mass for a random sample of size *n* statistical parameters ✓ $P(\bar{X} < 16) = 0.0179$ \checkmark · defining the required For this probability, $z_1 = -2.097$ (using GDC) $\checkmark \checkmark$ probability statement ✓ using technology $z_1 = \frac{\bar{x} - \mu}{\frac{\sigma}{\sqrt{n}}}$ to determine an equivalent z_1 -score $\checkmark \checkmark$ $\therefore -2.097 = \frac{16-17.3}{\frac{3.1}{5}} \checkmark \checkmark$ substituting correctly into a relevant $\frac{3.1}{\sqrt{n}} = \frac{16 - 17.3}{-2.097}$ probability equation VV solving the equation to find $n = \left(\frac{3.1}{0.62}\right)^2 = 25.005$ \checkmark the number of passengers ✓ communicate the There are 25 passengers chosen. ✓ result as an integer value √

Question 13 (8 marks) CU

Gradient =
$$\frac{dy}{dx} = \frac{y^2 - 11y + 30}{\cos^2(x)} \checkmark$$

Using separation of variables:

$$\int \frac{dy}{y^2 - 11y + 30} = \int \frac{1}{\cos^2(x)} \, dx \quad \checkmark$$
$$\int \frac{dy}{(y - 5)(y - 6)} = \int \sec^2(x) \, dx \dots (A)$$

Using partial fractions procedure:

$$\frac{1}{(y-5)(y-6)} = \frac{A}{y-5} + \frac{B}{y-6} \checkmark$$

$$1 = A(y-6) + B(y-5)$$

$$1 = Ay - 6A + By - 5B \checkmark$$

$$1 = (A+B)y + (-6A - 5B)$$
Equating coefficients:

Substituting A = -B into (2)

 $A + B = 0 \dots (1)$

 $-6A - 5B = 1 \dots (2) \checkmark$

$$-6(-B) - 5B = 1$$

B = 1

$$\therefore A = -1 \checkmark$$

Substituting into (A)

$$\therefore \int \sec^2(x) \, dx = \int \frac{-1}{y-5} + \frac{1}{y-6} \, dy$$
$$\tan(x) = \ln\left(\frac{y-6}{y-5}\right) + c \quad \checkmark \checkmark$$
$$\text{iven } x = 0, \ y = 7$$
$$-c = \ln\left(\frac{1}{2}\right)$$
$$\therefore \ c = \ln 2 \quad \checkmark$$
Finding the required function:

$$\tan(x) = \ln\left(\frac{y-6}{y-5}\right) + \ln 2$$
$$\tan(x) = \ln\left(\frac{2(y-6)}{y-5}\right) \checkmark$$
$$e^{\tan(x)} = \frac{2y-12}{y-5}$$

13.

justify procedures by explaining mathematical reasoning, by:

- forming a differential equation of the form $\frac{dy}{dx} =$ $f(x)g(y) \checkmark$
- recognising the use of separation of variables procedure for solving the differential equation ✓
- generating integral functions using partial fractions √√√√
- using suitable integration methods to find a general solution to the differential equation ✓✓
- applying the boundary condition to determine the constant of integration ✓
- substituting constant and using algebraic rearrangement to express *y* as a function of *x* √√√

use suitable technology to:

determine possible solutions for *x* ✓✓
ensure that the

solution selected

Using a graphical method to find the smallest positive value of *x* when y = 10. $\checkmark \checkmark$

