Specialist Mathematics 2019 v1.2
 IA2 sample marking scheme

April 2023

Examination (15\%)

This sample has been compiled by the QCAA to model one possible approach to allocating marks in an examination. It matches the examination mark allocations as specified in the syllabus ($\sim 60 \%$ simple familiar, $\sim 20 \%$ complex familiar and $\sim 20 \%$ complex unfamiliar) and ensures that all assessment objectives are assessed.

Assessment objectives

This assessment instrument is used to determine student achievement in the following objectives:

1. select, recall and use facts, rules, definitions and procedures drawn from all Unit 3 topics
2. comprehend mathematical concepts and techniques drawn from all Unit 3 topics
3. communicate using mathematical, statistical and everyday language and conventions
4. evaluate the reasonableness of solutions
5. justify procedures and decisions by explaining mathematical reasoning
6. solve problems by applying mathematical concepts and techniques drawn from all Unit 3 topics.

Queensland Curriculum \& Assessment Authority

Instrument-specific marking guide (ISMG)

Criterion: Foundational knowledge and problem-solving

Assessment objectives

1. select, recall and use facts, rules, definitions and procedures drawn from all Unit 3 topics
2. comprehend mathematical concepts and techniques drawn from all Unit 3 topics
3. communicate using mathematical and everyday language and conventions
4. evaluate the reasonableness of solutions
5. justify procedures and decisions by explaining mathematical reasoning
6. solve problems by applying mathematical concepts and techniques drawn from all Unit 3 topics.

Th	Cut-off	Marks
- consistently correct selection, recall and use of facts, rules, definitions and procedures; authoritative and accurate command of mathematical concepts and techniques; astute evaluation of the reasonableness of solutions and use of mathematical reasoning to correctly justify procedures and decisions, and prove propositions; and fluent application of mathematical concepts and techniques to solve problems in a comprehensive range of simple familiar, complex familiar and complex unfamiliar situations.	> 93\%	15
	> 87\%	14
- correct selection, recall and use of facts, rules, definitions and procedures; comprehension and clear communication of mathematical concepts and techniques; considered evaluation of the reasonableness of solutions and use of mathematical reasoning to justify procedures and decisions, and prove propositions; and proficient application of mathematical concepts and techniques to solve problems in simple familiar, complex familiar and complex unfamiliar situations.	> 80\%	13
	> 73\%	12
- thorough selection, recall and use of facts, rules, definitions and procedures; comprehension and communication of mathematical concepts and techniques; evaluation of the reasonableness of solutions and use of mathematical reasoning to justify procedures and decisions, and prove propositions; and application of mathematical concepts and techniques to solve problems in simple familiar and complex familiar situations.	> 67\%	11
	> 60\%	10
- selection, recall and use of facts, rules, definitions and procedures; comprehension and communication of mathematical concepts and techniques; evaluation of the reasonableness of some solutions using mathematical reasoning; and application of mathematical concepts and techniques to solve problems in simple familiar situations.	> 53\%	9
	> 47\%	8

The student work has the following characteristics:	Cut-off	Marks
- some selection, recall and use of facts, rules, definitions and procedures; basic comprehension and communication of mathematical concepts and techniques; inconsistent evaluation of the reasonableness of solutions using mathematical reasoning; and inconsistent application of mathematical concepts and techniques.	> 40\%	7
	> 33\%	6
- infrequent selection, recall and use of facts, rules, definitions and procedures; basic comprehension and communication of some mathematical concepts and techniques; some description of the reasonableness of solutions; and infrequent application of mathematical concepts and techniques.	> 27%	5
	> 20\%	4
- isolated selection, recall and use of facts, rules, definitions and procedures; partial comprehension and communication of rudimentary mathematical concepts and techniques; superficial description of the reasonableness of solutions; and disjointed application of mathematical concepts and techniques	> 13\%	3
	> 7\%	2
- isolated and inaccurate selection, recall and use of facts, rules, definitions and procedures; disjointed and unclear communication of mathematical concepts and techniques; and illogical description of the reasonableness of solutions.	> 0\%	1
- does not satisfy any of the descriptors above.		0

Task

See the sample assessment instrument for IA2: Examination (15\%) available on the QCAA Portal.

Sample marking scheme

Criterion	Marks allocated	Results
Foundational knowledge and problem-solving	15	-
Assessment objectives 1, 2, 3, 4,5 and 6		

The annotations are written descriptions of the expected response for each question and are related to the assessment objectives.

Note: $\checkmark=\frac{1}{2}$ mark

Marking scheme

 Simple familiar
Question 1 (5 marks) SF

1 a.
comprehend:

- the connection between parametric and Cartesian form
- the requirement to eliminate the parameter \checkmark
select and use:
- the relevant Pythagorean identity \checkmark
- a procedure to produce a Cartesian equation \checkmark
- a suitable procedure to the required result $\checkmark \checkmark$
a. $\quad \boldsymbol{r}(t)=3 \sin t \hat{\boldsymbol{\imath}}+4 \cos t \hat{\boldsymbol{\jmath}}=x \hat{\boldsymbol{\imath}}+y \hat{\boldsymbol{\jmath}}$
$x=3 \sin t$
$y=4 \cos t$
From (1) $\Rightarrow \sin t=\frac{x}{3}$
From (2) $\Rightarrow \quad \cos t=\frac{y}{4}$
Substituting these results into the identity
$\sin ^{2} t+\cos ^{2} t=1$
$\left(\frac{x}{3}\right)^{2}+\left(\frac{y}{4}\right)^{2}=1$
$\frac{x^{2}}{9}+\frac{y^{2}}{16}=1$
$144\left(\frac{x^{2}}{9}+\frac{y^{2}}{16}\right)=144$
$16 x^{2}+9 y^{2}=144$ (as required)
b. Using the result from above $\frac{x^{2}}{9}+\frac{y^{2}}{16}=1$

The graph of the path of the particle can be modelled by an ellipse $\checkmark \checkmark$ with x-intercepts at $\pm 3 \checkmark$ and y-intercepts at ± 4.

Question 2 (11 marks) SF

a. $\quad \overrightarrow{A B}=\boldsymbol{b}-\boldsymbol{a} \checkmark$

$$
\begin{aligned}
& =\left(\begin{array}{c}
3 \\
4 \\
-3
\end{array}\right)-\left(\begin{array}{c}
-2 \\
-3 \\
3
\end{array}\right) \\
& =\left(\begin{array}{c}
5 \\
7 \\
-6
\end{array}\right)
\end{aligned}
$$

1 b.
recall and use:

- the definition of general form of an ellipse $\checkmark \checkmark$
- the procedure to find intercepts of the ellipse $\checkmark \checkmark$

2a.
recall and use:

- the rule to determine the displacement vector \checkmark
- the procedure to result $\checkmark \checkmark$

2b.
select and use:

- a rule to find the vector equation of a line \checkmark
- a suitable procedure to result $\checkmark \checkmark$

2c.
comprehend the link between the cross product and the normal to the plane \checkmark select and use:

- a rule to find the vector equation of a plane $\checkmark \checkmark \checkmark$ recall and use:
- the scalar product
- a suitable procedure to result $\checkmark \checkmark$

2d.
recall and use:

- a procedure to produce an augmented matrix $\checkmark \checkmark$
- the Gaussian elimination method $\checkmark \checkmark \checkmark \checkmark$
- a suitable procedure to result $\checkmark \checkmark$
b. Vector equation of line $A B$ is

$$
\begin{aligned}
\boldsymbol{r} & =\boldsymbol{a}+k \boldsymbol{d} \\
& =\boldsymbol{a}+k \overrightarrow{A B} \checkmark \\
& =\left(\begin{array}{c}
-2 \\
-3 \\
3
\end{array}\right) \checkmark+k\left(\begin{array}{c}
5 \\
7 \\
-6
\end{array}\right) \checkmark
\end{aligned}
$$

(where k is a scalar)
c. $\overrightarrow{A B} \times \overrightarrow{A C}=\left(\begin{array}{c}42 \\ -12 \\ 21\end{array}\right)$ represents \boldsymbol{n}, (normal to $\left.P_{1}\right) \checkmark$ containing points $P(x, y, z)$

A vector in the plane is $\overrightarrow{A P}=\boldsymbol{p}-\boldsymbol{a} \checkmark$
The equation of P_{1} is
$\overrightarrow{A P} . \boldsymbol{n}=0$
$\left(\begin{array}{l}x+2 \\ y+3 \\ z-3\end{array}\right) \cdot\left(\begin{array}{c}42 \\ -12 \\ 21\end{array}\right)=0$ V
$42(x+2)-12(y+3)+21(z-3)=0 \checkmark$
$42 x+84-12 y-36+21 z-63=0$
$42 x-12 y+21 z=15$
$14 x-4 y+7 z=5$
d. Expressing the 3 planes as an augmented matrix:
$\left(\begin{array}{ccc|c}1 & -2 & 1 & -5 \\ -1 & 1 & 1 & 7 \\ 14 & -4 & 7 & 5\end{array}\right)$
$=\left(\begin{array}{ccc|c}1 & -2 & 1 & -5 \\ 0 & -1 & 2 & 2 \\ 0 & 10 & 21 & 103\end{array}\right)$ $\begin{gathered}R_{1}: R_{1} \\ R_{2}: R_{2}+R_{1} \\ R_{3}: R_{3}+14 R_{2} \\ =\left(\begin{array}{ccc|c}1 & -2 & 1 & -5 \\ 0 & -1 & 2 & 2 \\ 0 & 0 & 41 & 123\end{array}\right)\end{gathered}$
$=\left(\begin{array}{ccc|c}1 & -2 & 1 & -5 \\ 0 & 1 & -2 & -2 \\ 0 & 0 & 1 & 3\end{array}\right) \quad \begin{gathered}R_{1}: R_{1} \\ R_{2}:-R_{2} \\ R_{3}: R_{3} \div 41\end{gathered}$
$=\left(\begin{array}{ccc|c}1 & -2 & 0 & -8 \\ 0 & 1 & 0 & 4 \\ 0 & 0 & 1 & 3\end{array}\right) \quad \begin{gathered}R_{1}: R_{1}-R_{3} \\ R_{2}: R_{2}+2 R_{3} \\ R_{3}: R_{3}\end{gathered}$
$=\left(\begin{array}{lll|l}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 4 \\ 0 & 0 & 1 & 3\end{array}\right)$
$R_{1}: R_{1}+2 R_{2}$
$R_{2}: R_{2}$
$R_{3}: R_{3}$
The intersection point is $(0,4,3)$.

2 e .
evaluate the reasonableness of the solution $\checkmark \checkmark$

3a.
recall and use the required conversion of units $\checkmark \checkmark$ expressing in simplified form, \checkmark

4a.
recall and use a suitable procedure to:

- find the modulus
find the argument
communicate the result using:
- suitable polar form \checkmark
- exact values in simplified form \checkmark

4c.
select and use:

- De Moivre's theorem $\checkmark \checkmark$
- a suitable procedure to determine $w \checkmark$
communicate that:
- $\operatorname{Re}(w)$ is zero $\checkmark \checkmark$
- w is purely imaginary \checkmark
- a circular shape

5.

identify: $\checkmark \checkmark$
\checkmark
e. Substituting this result into $x-2 y+z=-5$

$$
\begin{aligned}
\text { LHS } & =0-8+3 \\
& =-5 \\
& =\text { RHS } \quad \checkmark \checkmark
\end{aligned}
$$

Question 3 (4 marks) SF

a. $\quad \omega=3$ rev per min

$$
\begin{aligned}
& =\frac{3 \times 2 \pi}{60} \mathrm{rad} \mathrm{~s}^{-1} \quad \checkmark \checkmark \\
& =\frac{\pi}{10} \quad \checkmark \quad \mathrm{rad} \mathrm{~s}^{-1}
\end{aligned}
$$

b. $\quad v=\omega r$

$$
\begin{aligned}
& =\frac{\pi}{10} \times 15 \quad \checkmark \\
& =\frac{3 \pi}{2} \\
& \checkmark \mathrm{~m} \mathrm{~s}^{-1} \quad \checkmark \checkmark
\end{aligned}
$$

Question 4 (7 marks) SF

a. Using GDC:

$$
z_{1}=2 \cos \left(\frac{\pi}{3}\right)+i \sin \left(\frac{\pi}{3}\right)=2 \operatorname{cis}\left(\frac{\pi}{3}\right) \checkmark \checkmark \checkmark \checkmark
$$

b. $\frac{z_{1}}{z_{2}}=\frac{2 \operatorname{cis}\left(\frac{\pi}{3}\right)}{4 \operatorname{cis}\left(\frac{\pi}{4}\right)}$

$$
=\frac{2}{4} \operatorname{cis}\left(\frac{\pi}{3}-\frac{\pi}{4}\right) \checkmark \checkmark
$$

$$
=\frac{1}{2} \operatorname{cis}\left(\frac{\pi}{12}\right) \checkmark \checkmark
$$

c. $w=\left(\frac{z_{1}}{z_{2}}\right)^{6}$

$$
\begin{aligned}
& =\left(\frac{1}{2} \operatorname{cis}\left(\frac{\pi}{12}\right)\right)^{6} \\
& =\left(\frac{1}{2}\right)^{6} \operatorname{cis}\left(6 \times \frac{\pi}{12}\right) \checkmark \\
& =\left(\frac{1}{2}\right)^{6} \operatorname{cis}\left(\frac{\pi}{2}\right) \checkmark \\
& =\frac{1}{64}\left(\cos \left(\frac{\pi}{2}\right)+i \sin \left(\frac{\pi}{2}\right)\right) \\
& =\frac{1}{64} i
\end{aligned}
$$

Since $\operatorname{Re}(w)=0 \checkmark \checkmark$ is
$\therefore w$ a pure imaginary number

- that the centre of the circle is $(1,-1) \checkmark \checkmark$
- that the radius of the circle is 2
recognise subset of the complex plane is the shaded region inside the circle $\checkmark \checkmark$ exclusive of its circumference \checkmark

6a.
comprehend the concept of the root of an equation by showing the substitution step \checkmark
use technology (or otherwise) to show that $P(-2)$ equals zero \checkmark

Question 5 (4 marks) SF

Question 6 (5 marks) SF

a. $\quad P(-2)$

$$
\begin{aligned}
& =(-2)^{3}+(2-6 i)(-2)^{2}-(9+12 i)(-2)-18 \\
& =0
\end{aligned}
$$

b.

$$
\begin{array}{r}
z+2 \frac{z^{2}}{\frac{-6 i z}{}-9 \checkmark} \begin{array}{r}
z^{3}+(2-6 l) z^{2}+(-9-12 l) z-18 \\
\underline{z}^{3}+\quad 2 z^{2}
\end{array} \\
-6 i z^{2}+(-9-12 i) z-18 \\
\underline{-6 i z^{2}+\quad-12 i z}
\end{array}
$$

$$
-9 z-18
$$

$$
-9 z-18
$$

So $Q(z)=z^{2}-6 i z-9$

6b.
translate information into a suitable mathematical format \checkmark
select and use a suitable long division polynomial procedure (or similar) $\checkmark \checkmark \checkmark \checkmark \checkmark \checkmark$
communicate the polynomial $Q(z)$ clearly \checkmark

- the three steps of the proof \checkmark
- the concluding statement \checkmark

9.

solve by finding a suitable expression for $v \times B \checkmark \checkmark$

LHS $=3^{2 k+6}-2^{2 k+2}$

$$
\begin{aligned}
& =3^{2} \times 3^{2 k+4}-2^{2} \times 2^{2 k} \\
& =9 \times\left(5 A+2^{2 k}\right)-2^{2} \times 2^{2 k} \\
& =45 A+9 \times 2^{2 k}-4 \times 2^{2 k} \\
& =45 A+5 \times 2^{2 k}
\end{aligned}
$$

$$
=5\left(9 A+2^{2 k}\right) \quad \checkmark \quad\left(\text { where } 9 A+2^{2 k} \in \mathrm{Z}^{+}\right)
$$

= RHS

So the proposition is proven true for $n=k+1$.
Hence, the original proposition is proven using the method of mathematical induction.

Complex unfamiliar

Question 9 (6 marks) CU

Finding the vector product,

$$
\begin{aligned}
\boldsymbol{v} \times \boldsymbol{B} & =\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right) \times\left(\begin{array}{c}
3 \\
-2 \\
1
\end{array}\right) \\
& =\left[\begin{array}{ccc}
\hat{\boldsymbol{\imath}} & \hat{\boldsymbol{\jmath}} & \widehat{\boldsymbol{k}} \\
a & b & c \\
3 & -2 & 1
\end{array}\right] \\
& =\hat{\boldsymbol{\imath}}\left[\begin{array}{cc}
b & c \\
-2 & 1
\end{array}\right]-\hat{\boldsymbol{\jmath}}\left[\begin{array}{ll}
a & c \\
3 & 1
\end{array}\right]+\widehat{\boldsymbol{k}}\left[\begin{array}{cc}
a & b \\
3 & -2
\end{array}\right] \\
& =(b+2 c) \hat{\boldsymbol{\imath}}+(-a+3 c) \hat{\boldsymbol{\jmath}}+(-2 a-3 b) \widehat{\boldsymbol{k}} \\
& =\left(\begin{array}{c}
b+2 c \\
-a+3 c \\
-2 a-3 b
\end{array}\right) \checkmark \checkmark
\end{aligned}
$$

Finding the force vector,
$\boldsymbol{F}=q(\boldsymbol{E}+\boldsymbol{v} \times \boldsymbol{B})$
$=1\left(\left(\begin{array}{c}2 a \\ b \\ 3 c\end{array}\right)+\left(\begin{array}{c}b+2 c \\ -a+3 c \\ -2 a-3 b\end{array}\right)\right)$
$=\left(\begin{array}{c}2 a+b+2 c \\ -a+b+3 c \\ -2 a-3 b+3 c\end{array}\right)$
use technology to solve the matrix equation $\checkmark \checkmark$
justify procedure to determine the speed of the particle $\checkmark \checkmark$
evaluate the reasonableness of solution \checkmark
communicate the reasonableness of the statement \checkmark
10.
solve the problem to find the roots of unity $\checkmark \checkmark$
justify decision for choosing the required root \checkmark
solve the problem to determine the three required roots of $P(z) \quad \checkmark \checkmark$
comprehend by expressing $P(z)$ in factorised form \checkmark
solve the problem by expressing $P(z)$ in expanded form $\checkmark \checkmark \checkmark \checkmark \checkmark$

Equating to the given force, $\boldsymbol{F}=\left(\begin{array}{c}-2 \\ -6 \\ 1\end{array}\right)$ the following simultaneous equations are formed:

$$
\begin{gathered}
2 a+b+2 c=-2 \\
-a+b+3 c=-6 \\
-2 a-3 b+3 c=1
\end{gathered}
$$

Rewriting in matrix form

$$
\left(\begin{array}{ccc}
2 & 1 & 2 \\
-1 & 1 & 3 \\
-2 & -3 & 3
\end{array}\right)\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right)=\left(\begin{array}{c}
-2 \\
-6 \\
1
\end{array}\right)
$$

Solving the matrix equation (using GDC)

$$
\begin{aligned}
\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right) & =\left(\begin{array}{ccc}
2 & 1 & 2 \\
-1 & 1 & 3 \\
-2 & -3 & 3
\end{array}\right)^{-1}\left(\begin{array}{c}
-2 \\
-6 \\
1
\end{array}\right) \\
& =\left(\begin{array}{c}
1 \\
-2 \\
-1
\end{array}\right) \checkmark \checkmark
\end{aligned}
$$

So, the velocity vector is $v=\left(\begin{array}{c}1 \\ -2 \\ -1\end{array}\right)$
Calculating the speed when $\boldsymbol{F}=\left(\begin{array}{c}-2 \\ -6 \\ 1\end{array}\right)$

$$
\begin{aligned}
|v| & =\sqrt{1^{2}+(-2)^{2}+(-1)^{2}} \\
& =\sqrt{6}
\end{aligned}
$$

The speed of the particle is $\sqrt{6}(\approx 2.4) \mathrm{m} \mathrm{s}^{-1}$ which is less than $3 \mathrm{~m} \mathrm{~s}^{-1}$.

So, the scientist's statement is not reasonable.

Question 10 (6 marks) CU

The 3 roots of unity of $\omega^{3}=1$ are:
$\omega_{1}=1$ cis $0^{\circ}=1+0 i$
$\omega_{2}=1 \operatorname{cis} 120^{\circ}=\cos 120^{\circ}+\sin 120^{\circ} i=\frac{-1}{2}+\frac{\sqrt{3}}{2} i$
$\omega_{3}=1 \operatorname{cis} 240^{\circ}=\cos 240^{\circ}+\sin 240^{\circ} i=\frac{-1}{2}-\frac{\sqrt{3}}{2} i$
Given $\operatorname{Im}(\omega)>0$, then the required root is $\omega_{2} . \quad \checkmark$
Given $P(z)=z^{3}+a z^{2}+b z+c$ has roots at $1,-\omega_{2}$ and $-\overline{\omega_{2}}$, the three roots are:

