Specialist Mathematics 2019 v1.2

IA2 sample marking scheme

April 2023

Examination (15%)

This sample has been compiled by the QCAA to model one possible approach to allocating marks in an examination. It matches the examination mark allocations as specified in the syllabus ($\sim 60\%$ simple familiar, $\sim 20\%$ complex familiar and $\sim 20\%$ complex unfamiliar) and ensures that all assessment objectives are assessed.

Assessment objectives

This assessment instrument is used to determine student achievement in the following objectives:

- 1. select, recall and use facts, rules, definitions and procedures drawn from all Unit 3 topics
- 2. comprehend mathematical concepts and techniques drawn from all Unit 3 topics
- 3. communicate using mathematical, statistical and everyday language and conventions
- 4. evaluate the reasonableness of solutions
- 5. justify procedures and decisions by explaining mathematical reasoning
- 6. solve problems by applying mathematical concepts and techniques drawn from all Unit 3 topics.

Instrument-specific marking guide (ISMG)

Criterion: Foundational knowledge and problem-solving

Assessment objectives

- 1. select, recall and use facts, rules, definitions and procedures drawn from all Unit 3 topics
- 2. comprehend mathematical concepts and techniques drawn from all Unit 3 topics
- 3. communicate using mathematical and everyday language and conventions
- 4. evaluate the reasonableness of solutions
- 5. justify procedures and decisions by explaining mathematical reasoning
- 6. solve problems by applying mathematical concepts and techniques drawn from all Unit 3 topics.

The student work has the following characteristics:	Cut-off	Marks
 consistently correct selection, recall and use of facts, rules, definitions and procedures; authoritative and accurate command of mathematical concepts and techniques; astute evaluation of the reasonableness of solutions and use of 	> 93%	15
mathematical reasoning to correctly justify procedures and decisions, and prove propositions; and fluent application of mathematical concepts and techniques to solve problems in a comprehensive range of simple familiar, complex familiar and complex unfamiliar situations.		14
• correct selection, recall and use of facts, rules, definitions and procedures; comprehension and clear communication of mathematical concepts and techniques; considered evaluation of the reasonableness of solutions and use of	> 80%	13
mathematical reasoning to justify procedures and decisions, and prove propositions; and proficient application of mathematical concepts and techniques to solve problems in simple familiar, complex familiar and complex unfamiliar situations.		12
• thorough selection, recall and use of facts, rules, definitions and procedures; comprehension and communication of mathematical concepts and techniques; evaluation of the reasonableness of solutions and use of mathematical reasoning to justify procedures and decisions, and prove propositions; and application of mathematical concepts and techniques to solve problems in simple familiar and complex familiar situations.	> 67%	11
	> 60%	10
• selection, recall and use of facts, rules, definitions and procedures; comprehension and communication of mathematical concepts and techniques; evaluation of the reasonableness of some solutions using mathematical reasoning; and application of mathematical concepts and techniques to solve problems in simple familiar situations.	> 53%	9
	> 47%	8

The student work has the following characteristics:	Cut-off	Marks
• some selection, recall and use of facts, rules, definitions and procedures; basic comprehension and communication of mathematical concepts and techniques; inconsistent evaluation of the reasonableness of solutions using mathematical reasoning; and inconsistent application of mathematical concepts and techniques.		7
		6
• infrequent selection, recall and use of facts, rules, definitions and procedures; basic comprehension and communication of some mathematical concepts and techniques; some description of the reasonableness of solutions; and infrequent application of mathematical concepts and techniques.	> 27%	5
	> 20%	4
• isolated selection, recall and use of facts, rules, definitions and procedures; partial comprehension and communication of rudimentary mathematical concepts and techniques; superficial description of the reasonableness of solutions; and disjointed application of mathematical concepts and techniques.	> 13%	3
	> 7%	2
• isolated and inaccurate selection, recall and use of facts, rules, definitions and procedures; disjointed and unclear communication of mathematical concepts and techniques; and illogical description of the reasonableness of solutions.	> 0%	1
does not satisfy any of the descriptors above.		0

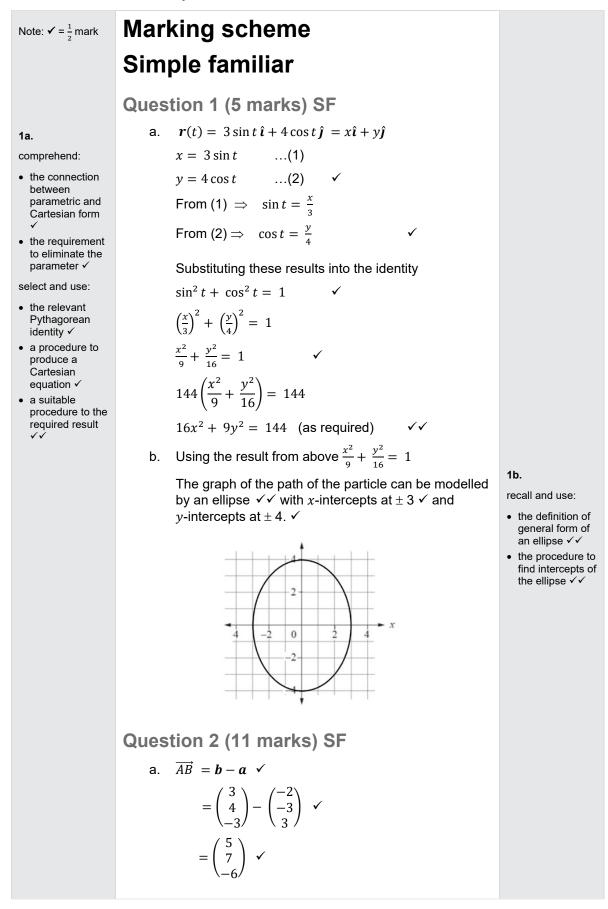
Task

See the sample assessment instrument for IA2: Examination (15%) available on the QCAA Portal.

Sample marking scheme

Criterion	Marks allocated	Results
Foundational knowledge and problem-solving Assessment objectives 1, 2, 3, 4, 5 and 6	15	_
Total	15	—

The annotations are written descriptions of the expected response for each question and are related to the assessment objectives.



2a.

recall and use:

- the rule to determine the displacement . vector ✓
- · the procedure to result √ √

C.

2b.

select and use:

- a rule to find the vector equation of a line ✓
- a suitable procedure to result √ √

2c.

comprehend the link between the cross product and the normal to the plane √

select and use:

• a rule to find the vector equation of a plane VVV

recall and use:

- the scalar product
- a suitable procedure to result √√

2d.

recall and use:

- a procedure to produce an augmented matrix √√
- the Gaussian elimination method $\checkmark \checkmark \checkmark \checkmark$
- a suitable procedure to result √√

b. Vector equation of line AB is r = a + kd $= a + k \overrightarrow{AB} \checkmark$ $= \begin{pmatrix} -2\\ -3\\ 3 \end{pmatrix} \checkmark + k \begin{pmatrix} 5\\ 7\\ -6 \end{pmatrix} \checkmark$ (where k is a scalar) $\overrightarrow{AB} \times \overrightarrow{AC} = \begin{pmatrix} 42\\ -12\\ 21 \end{pmatrix}$ represents \boldsymbol{n} , (normal to P_1) \checkmark containing points P(x, y, z)A vector in the plane is $\overrightarrow{AP} = \mathbf{p} - \mathbf{a}$ \checkmark The equation of P_1 is \overrightarrow{AP} . $\boldsymbol{n} = 0 \quad \checkmark$ $\begin{pmatrix} x+2\\ y+3\\ z-3 \end{pmatrix} \cdot \begin{pmatrix} 42\\ -12\\ 21 \end{pmatrix} = 0 \checkmark$ $42(x+2) - 12(y+3) + 21(z-3) = 0 \checkmark$ 42x + 84 - 12y - 36 + 21z - 63 = 042x - 12y + 21z = 1514x - 4y + 7z = 5 \checkmark d. Expressing the 3 planes as an augmented matrix: $\begin{pmatrix} 1 & -2 & 1 & -5 \\ -1 & 1 & 1 & 7 \\ 14 & -4 & 7 & 5 \end{pmatrix}$ $\checkmark\checkmark$ $= \begin{pmatrix} 1 & -2 & 1 & | & -5 \\ 0 & -1 & 2 & | & 2 \\ 0 & 10 & 21 & | & 103 \end{pmatrix} \qquad \begin{array}{c} R_1:R_1 \\ R_2:R_2+R_1 \\ R_3:R_3+14R_2 \end{array}$

$$\begin{array}{c|c} -2 & 1 & -5 \\ -1 & 2 & 2 \\ 0 & 41 & 123 \end{array}) \qquad \begin{array}{c} R_1: R_1 \\ R_2: R_2 \\ R_3: R_3 + 10 R_2 \end{array}$$

 $=\begin{pmatrix}1\\0\\0\end{pmatrix}$

=

=

The intersection point is (0, 4, 3).

Page 5 of 12

	2y + 2 = 3	
2e.	LHS = $0 - 8 + 3$	
evaluate the reasonableness of the solution ✓ ✓	= -5	
	= RHS ✓✓	
	Question 3 (4 marks) SF	
	a. ω = 3 rev per min	
3a. recall and use the required	$=\frac{3\times 2\pi}{60}$ rad s ⁻¹ \checkmark	
conversion of units $\checkmark \checkmark$ expressing in	$=\frac{\pi}{10}$ \checkmark rad s ⁻¹	3b. recall and use the rule for finding the
simplified form, \checkmark	b. $v = \omega r \checkmark$	speed of the circular motion \checkmark
	$=\frac{\pi}{10} \times 15 \checkmark$	communicate using:
	$=\frac{3\pi}{2} \qquad \checkmark \text{ m s}^{-1} \checkmark \checkmark$	 relevant units ✓ ✓
4a.		 exact values in simplified form
recall and use a suitable procedure to:	Question 4 (7 marks) SF	\checkmark
 find the modulus 	a. Using GDC:	
 find the argument ✓ 	$z_1 = 2\cos\left(\frac{\pi}{3}\right) + i\sin\left(\frac{\pi}{3}\right) = 2\cos\left(\frac{\pi}{3}\right) \checkmark \checkmark \checkmark \checkmark$	
communicate the result using:	b. $\frac{z_1}{z_2} = \frac{2 \operatorname{cis}(\frac{\pi}{3})}{4 \operatorname{cis}(\frac{\pi}{4})}$	4b.
 suitable polar form ✓ 	$= \frac{2}{4} \operatorname{cis} \left(\frac{\pi}{3} - \frac{\pi}{4} \right) \checkmark \checkmark$	recall and use a suitable complex
 exact values in simplified form ✓ 	$=\frac{1}{2}\operatorname{cis}\left(\frac{\pi}{12}\right)\checkmark\checkmark$	number division procedure to:
4c.	c. $w = \left(\frac{z_1}{z_1}\right)^6$	 divide the moduli ✓ subtract the
select and use:	(22)	arguments ✓ communicate the
 De Moivre's theorem ✓√ 	$= \left(\frac{1}{2}\operatorname{cis}\left(\frac{\pi}{12}\right)\right)^{6}$ $\begin{pmatrix} 1 \\ 1 \end{pmatrix}^{6} \cdot \left(\zeta \\ \eta \\ \eta \\ \eta \end{pmatrix} \right) \in \zeta$	result using exact values in simplified form ✓ ✓
 a suitable procedure to determine w ✓ 	$= \left(\frac{1}{2}\right)^{6} \operatorname{cis}\left(6 \times \frac{\pi}{12}\right) \checkmark \checkmark$ $= \left(\frac{1}{2}\right)^{6} \operatorname{cis}\left(\frac{\pi}{2}\right) \checkmark$	
communicate that:		
 <i>Re(w)</i> is zero √√ 	$=\frac{1}{64}\left(\cos\left(\frac{\pi}{2}\right)+i\sin\left(\frac{\pi}{2}\right)\right)$	
 w is purely imaginary ✓ 	$=\frac{1}{64}i$	
	Since $Re(w) = 0 \checkmark \checkmark$ is	
	$\therefore w$ a pure imaginary number. \checkmark	
5.		
identify:a circular shape		

Substituting this result into x - 2y + z = -5

e.

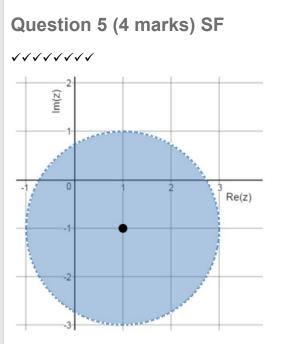
 that the radius of the circle is 2

recognise subset of the complex plane is the shaded region inside the circle ✓✓ exclusive of its circumference ✓

6a.

comprehend the concept of the root of an equation by showing the substitution step ✓

use technology (or otherwise) to show that P(-2) equals zero \checkmark



Question 6 (5 marks) SF

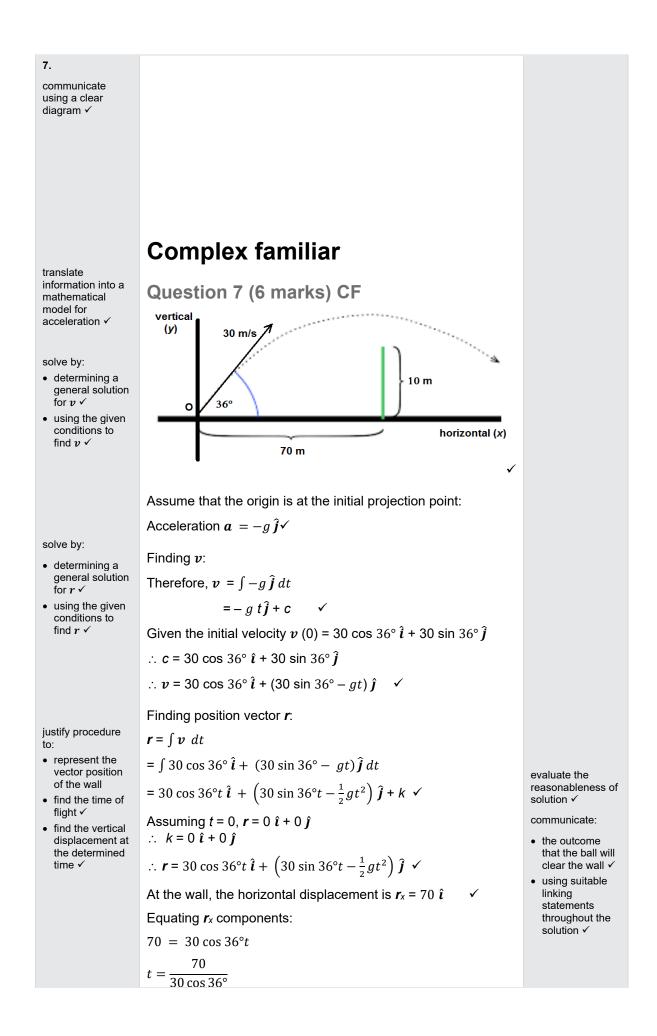
a. P(-2) $= (-2)^{3} + (2 - 6i)(-2)^{2} - (9 + 12i)(-2) - 18 \checkmark$ $= 0 \checkmark$ b. $\frac{z^{2} - 6iz - 9 \checkmark}{z + 2)z^{3} + (2 - 6i)z^{2} + (-9 - 12i)z - 18}$ $\frac{z^{3} + 2z^{2}}{-6iz^{2} + (-9 - 12i)z - 18} \checkmark$ $-6iz^{2} + (-9 - 12i)z - 18 \checkmark$ $-9z - 18 \checkmark$ $-9z - 18 \checkmark$ 0So $Q(z) = z^{2} - 6iz - 9 \checkmark$

6b.

translate information into a suitable mathematical format ✓

select and use a suitable long division polynomial procedure (or similar) $\checkmark \checkmark \checkmark \checkmark \checkmark \checkmark \checkmark$

communicate the polynomial Q(z) clearly \checkmark



8.	$= 2.88 \text{ s}$ \checkmark	
comprehend by making connections with the requirement of the proof ✓	Determining the vertical displacement at $t = 2.88$ s	
	$r_y = 30 \sin 36^{\circ}(2.88) - \frac{1}{2}(9.8)(2.88)^2$	
	= 10.1 m ✓	
prove the step 1 proposition using mathematical	This is greater than the 10-metre height of the wall. \checkmark So, the ball should just clear the wall. $\checkmark \checkmark$	
reasoning √√	Question 8 (6 marks) CF	
	Using mathematical induction to prove that, for $n \in \mathbb{Z}^+$,	
	$3^{2n+4} - 2^{2n}$ is divisible by 5.	
	This statement can be rewritten as the proposition	
	$3^{2n+4} - 2^{2n} = 5A$ where $A \in \mathbb{Z}^+$	
	Step 1:	
	RTP the proposition is true for $n = 1$.	
	LHS = $3^{2 \times 1+4} - 2^{2 \times 1}$	
comprehend the information by identifying the	$= 3^6 - 2^2$	
critical element of step 2 ✓ ✓	= 725	
	RHS = 5 × 145	
prove the step 3 proposition using	= 725	
mathematical reasoning	= LHS	
$\checkmark \checkmark \checkmark \checkmark \checkmark$	So, the proposition is proven true for $n = 1$.	
	Step 2:	
	' If the proposition is assumed to be true for $n = k$, then	
	$3^{2k+4} - 2^{2k} = 5A$ where $k, A \in \mathbb{Z}^+$ $\checkmark \checkmark$	
	Step 3: Use this assumption to prove that the proposition is true	
	for $n = k + 1$,	
	$3^{2(k+1)+4} - 2^{2(k+1)} = 5A$	
	which simplifies to	
communicate clearly:	$3^{2k+6} - 2^{2k+2} = 5A$ where $k, A \in \mathbb{Z}^+$	

· the three steps LHS = $3^{2k+6} - 2^{2k+2}$ of the proof \checkmark · the concluding $= 3^2 \times 3^{2k+4} - 2^2 \times 2^{2k}$ statement ✓ = $9 \times (5A + 2^{2k}) - 2^2 \times 2^{2k} \checkmark$ (using assumption) $= 45A + 9 \times 2^{2k} - 4 \times 2^{2k}$ = $45A + 5 \times 2^{2k}$ \checkmark 9. = $5(9A + 2^{2k})$ \checkmark (where $9A + 2^{2k} \in \mathbb{Z}^+$) solve by finding a suitable = RHS expression for $v \times B \checkmark \checkmark$ So the proposition is proven true for n = k + 1. Hence, the original proposition is proven using the method of mathematical induction. $\checkmark\checkmark$ Complex unfamiliar Question 9 (6 marks) CU Finding the vector product, $\boldsymbol{v} \times \boldsymbol{B} = \begin{pmatrix} a \\ b \\ c \end{pmatrix} \times \begin{pmatrix} 3 \\ -2 \\ 1 \end{pmatrix}$ solve by finding a suitable expression for F $= \begin{bmatrix} \hat{i} & \hat{j} & \hat{k} \\ a & b & c \\ 3 & -2 & 1 \end{bmatrix}$ √√ $= \hat{\imath} \begin{bmatrix} b & c \\ -2 & 1 \end{bmatrix} - \hat{\jmath} \begin{bmatrix} a & c \\ 3 & 1 \end{bmatrix} + \hat{k} \begin{bmatrix} a & b \\ 3 & -2 \end{bmatrix}$ $= (b + 2c) \hat{i} + (-a + 3c) \hat{j} + (-2a - 3b) \hat{k}$ $= \begin{pmatrix} b+2c\\ -a+3c\\ -2a-3b \end{pmatrix} \checkmark \checkmark$ Finding the force vector, $\boldsymbol{F} = q(\boldsymbol{E} + \boldsymbol{v} \times \boldsymbol{B})$ translate information into a mathematically $= 1 \left(\begin{pmatrix} 2a \\ b \\ 3c \end{pmatrix} + \begin{pmatrix} b+2c \\ -a+3c \\ -2a-3b \end{pmatrix} \right)$ workable format: • simultaneous equations ✓ matrix equation $= \begin{pmatrix} 2a+b+2c\\ -a+b+3c\\ -2a-3b+3c \end{pmatrix} \qquad \checkmark \checkmark$

use technology to solve the matrix equation ✓✓	Equating to the given force, $F = \begin{pmatrix} -2 \\ -6 \\ 1 \end{pmatrix}$ the following	
	simultaneous equations are formed:	
	2a + b + 2c = -2	
	-a+b+3c = -6	
	$-2a - 3b + 3c = 1 \qquad \checkmark$	
	Rewriting in matrix form	
	$ \begin{pmatrix} 2 & 1 & 2 \\ -1 & 1 & 3 \\ -2 & -3 & 3 \end{pmatrix} \begin{pmatrix} a \\ b \\ c \end{pmatrix} = \begin{pmatrix} -2 \\ -6 \\ 1 \end{pmatrix} \checkmark $	
justify procedure to determine the speed of the particle $\checkmark \checkmark$	Solving the matrix equation (using GDC)	
evaluate the reasonableness of solution ✓	$ \begin{pmatrix} a \\ b \\ c \end{pmatrix} = \begin{pmatrix} 2 & 1 & 2 \\ -1 & 1 & 3 \\ -2 & -3 & 3 \end{pmatrix}^{-1} \begin{pmatrix} -2 \\ -6 \\ 1 \end{pmatrix} $	
communicate the reasonableness of the statement ✓	$= \begin{pmatrix} 1 \\ -2 \\ -1 \end{pmatrix} \checkmark \checkmark$	
10.	So, the velocity vector is $v = \begin{pmatrix} 1 \\ -2 \\ -1 \end{pmatrix}$	
solve the problem	$\begin{pmatrix} 2\\ -1 \end{pmatrix}$	
to find the roots of unity \checkmark	Calculating the speed when $F = \begin{pmatrix} -2 \\ -6 \\ 1 \end{pmatrix}$	
	$ v = \sqrt{1^2 + (-2)^2 + (-1)^2} \checkmark$	
justify decision for choosing the required root ✓	$=\sqrt{6}$ \checkmark	
	The speed of the particle is $\sqrt{6}$ (\approx 2.4) m s ⁻¹ which is less than 3 m s ⁻¹ .	
solve the problem to determine the three required roots of $P(z) \checkmark \checkmark$	So, the scientist's statement is not reasonable. \checkmark	
	Question 10 (6 marks) CU	
	The 3 roots of unity of $\omega^3 = 1$ are:	
	$\omega_1 = 1 \operatorname{cis} 0^{\circ} \qquad \qquad = 1 + 0 \operatorname{i}$	
comprehend by expressing $P(z)$ in factorised form \checkmark	$\omega_2 = 1 \operatorname{cis} 120^\circ = \cos 120^\circ + \sin 120^\circ i = \frac{-1}{2} + \frac{\sqrt{3}}{2}i$	
	$\omega_3 = 1 \operatorname{cis} 240^\circ = \cos 240^\circ + \sin 240^\circ i = \frac{-1}{2} - \frac{\sqrt{3}}{2}i \checkmark \checkmark$	
solve the problem by expressing $P(z)$ in expanded form $\sqrt{\sqrt{3}} \sqrt{\sqrt{3}}$	Given Im(ω) > 0, then the required root is ω_2 .	
	Given $P(z) = z^3 + az^2 + bz + c$ has roots at 1, $-\omega_2$ and $-\overline{\omega_2}$, the three roots are:	

$$\begin{array}{l}
1, -\left(\frac{-1}{2} + \frac{\sqrt{3}}{2}i\right) \text{ and } -\left(\frac{-1}{2} - \frac{\sqrt{3}}{2}i\right) \\
\text{or} \quad 1, \frac{1}{2} - \frac{\sqrt{3}}{2}i \quad \checkmark \text{ and } \frac{1}{2} + \frac{\sqrt{3}}{2}i \quad \checkmark \\
\text{In factorised form:} \\
P(z) = (z-1)\left(z - \left(\frac{1}{2} - \frac{\sqrt{3}}{2}i\right)\right)\left(z - \left(\frac{1}{2} + \frac{\sqrt{3}}{2}i\right)\right) \quad \checkmark \\
\text{In expanded form:} \\
P(z) = (z-1)\left(z - \frac{1}{2} + \frac{\sqrt{3}}{2}i\right)\left(z - \frac{1}{2} - \frac{\sqrt{3}}{2}i\right) \quad \checkmark \\
= (z-1)\left(\left(z - \frac{1}{2}\right) + \frac{\sqrt{3}}{2}i\right)\left(\left(z - \frac{1}{2}\right) - \frac{\sqrt{3}}{2}i\right) \\
= (z-1)\left(z - \frac{1}{2}\right)^{2} + \left(\frac{\sqrt{3}}{2}\right)^{2} \\
= (z-1)\left((z^{2} - z + \frac{1}{4} + \frac{3}{4}\right) \\
= (z^{3} - 2z^{2} + z - z^{2} + z - 1 \\
= z^{3} - 2z^{2} + 2z - 1 \quad \checkmark \\
\text{Equating with } P(z) = z^{3} + az^{2} + bz + c, \\
a = -2, b = 2, c = -1 \quad \checkmark
\end{array}$$