External assessment 2022

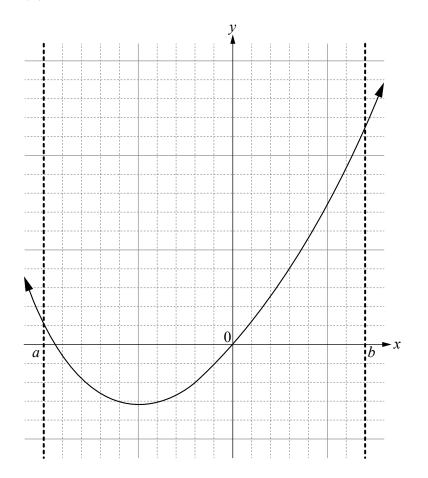
Multiple choice question book

Mathematical Methods

Paper 1 — Technology-free

General instruction

• Work in this book will not be marked.



Section 1

QUESTION 1

Consider the graph of f'(x) for $a \le x \le b$.

Which statement describes all the local maxima and minima of the graph of f(x) over $a \le x \le b$?

- (A) one local minimum and one local maximum
- (B) one local minimum and two local maxima
- (C) one local minimum only
- (D) one local maximum only

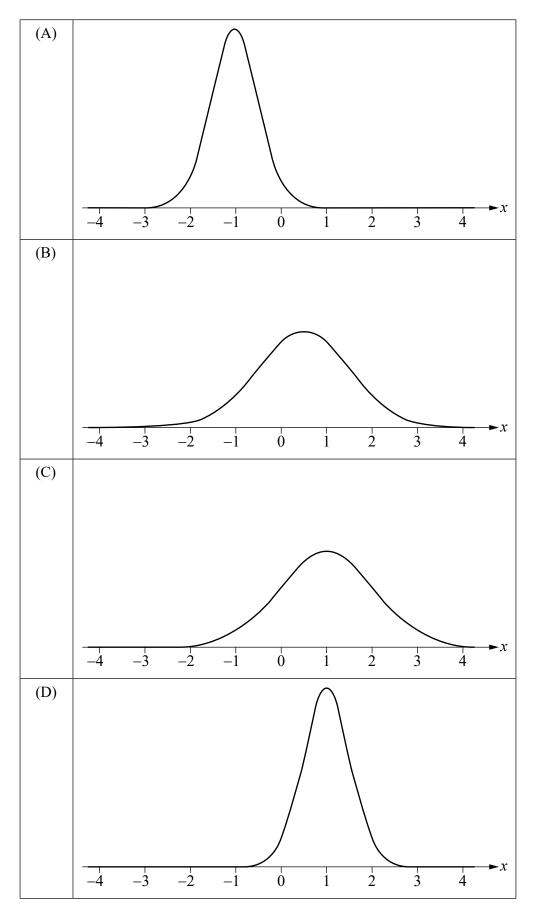
A binomial random variable arises from the number of successes in n independent Bernoulli trials. A context **not** suitable for modelling using a binomial random variable is recording the number of

- (A) heads when a coin is tossed 12 times.
- (B) left-handed people in a sample of 100 people.
- (C) times a player hits a target from 20 shots where each shot is independent of all other shots.
- (D) red marbles selected when three marbles are drawn without replacement from a bag containing four blue and five red marbles.

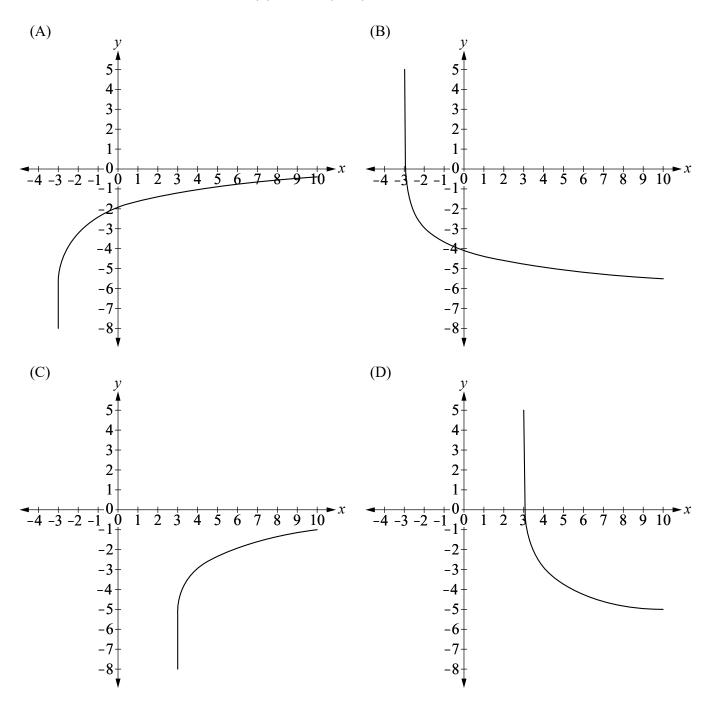
QUESTION 3

The area between the curve $y = 9 - x^2$ and the *x*-axis is

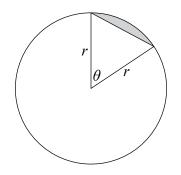
- (A) 12 units^2
- (B) 18 units^2
- (C) 36 units^2
- (D) 54 $units^2$


QUESTION 4

The weekly amount of money a company spends on repairs is normally distributed, with a mean of \$1200 and a standard deviation of \$100.


Given that $P(Z \le -2.5) = 0.0062$ and P(Z > 1) = 0.1587, where Z is a standard normal random variable, determine the probability that the weekly repair costs will be between \$950 and \$1300.

- (A) 0.6525
- (B) 0.6587
- (C) 0.8351
- (D) 0.8413


Which normal distribution curve best represents a normal distribution with a mean of 1 and a standard deviation of 0.5?

Which graph represents the function $f(x) = -3 - \ln(x+3)$?

A circle with radius r and internal angle θ has a shaded segment as shown.

If θ is in radians, the area of the shaded segment is

(A)
$$\frac{r^2}{2} \left(\frac{\theta \pi}{180} - \sin(\theta) \right)$$

(B)
$$\frac{r^2}{2} \left(\theta - \sin(\theta) \right)$$

(C)
$$\frac{r^2}{4} \left(\frac{\theta \pi}{90} - 1 \right)$$

(D)
$$\frac{r^2}{2}(\theta - 1)$$

QUESTION 8

In a survey, 80 respondents exercised daily, while 120 did not. When calculating the approximate 95% confidence interval for the proportion of people who exercise daily, the margin of error is

(A)
$$1.96\sqrt{\frac{0.4(1-0.4)}{200}}$$

(B) $0.95\sqrt{\frac{0.4(1-0.4)}{200}}$
(C) $1.96\sqrt{\frac{0.67(1-0.67)}{120}}$
(D) $0.95\sqrt{\frac{0.67(1-0.67)}{120}}$

The approximate area under the curve $f(x) = \sqrt{2x+1}$ between x = 0 and x = 4 using the trapezoidal rule with four strips is

- (A) $2 + \sqrt{3} + \sqrt{5} + \sqrt{7}$
- (B) $2+2(\sqrt{3}+\sqrt{5}+\sqrt{7})$
- (C) $4 + 2(\sqrt{3} + \sqrt{5} + \sqrt{7})$
- (D) $4 + \sqrt{3} + \sqrt{5} + \sqrt{7}$

QUESTION 10

A survey plans to draw conclusions based on a random sample of 1% of Queensland's adult population. To be regarded as a random sample, every

- (A) adult in the population will be placed in an alphabetical list and every 100th person will be selected for the sample.
- (B) adult in the population can choose to participate until the sample size has been reached.
- (C) subgroup within the population will be represented in a similar proportion in the sample.
- (D) adult in the population will have an equal chance of being selected for the sample.

© State of Queensland (QCAA) 2022 Licence: https://creativecommons.org/licenses/by/4.0 | Copyright notice: www.qcaa.qld.edu.au/copyright — lists the full terms and conditions, which specify certain exceptions to the licence. | Attribution: © State of Queensland (QCAA) 2022