Mathematical Methods v1.2

Mensuration			
circumference of a circle	$C=2 \pi r$	area of a circle	$A=\pi r^{2}$
area of a parallelogram	$A=b h$	area of a trapezium	$A=\frac{1}{2}(a+b) h$
area of a triangle	$A=\frac{1}{2} b h$	total surface area of a cone	$S=\pi r s+\pi r^{2}$
total surface area of a cylinder	$S=2 \pi r h+2 \pi r^{2}$	surface area of a sphere	$S=4 \pi r^{2}$
volume of a cone	$V=\frac{1}{3} \pi r^{2} h$	volume of a cylinder	$V=\pi r^{2} h$
volume of a prism	$V=A h$	volume of a pyramid	$V=\frac{1}{3} A h$
volume of a sphere	$V=\frac{4}{3} \pi r^{3}$		

Sequences and series

arithmetic sequence	$t_{n}=t_{1}+(n-1) d$
	$S_{n}=\frac{n}{2}\left(2 t_{1}+(n-1) d\right)=\frac{n}{2}\left(t_{1}+t_{n}\right)$
geometric sequence	$t_{n}=t_{1} r^{(n-1)}$
	$S_{n}=t_{1} \frac{\left(r^{n}-1\right)}{(r-1)}$
	$S_{\infty}=\frac{t_{1}}{(1-r)},\|r\|<1$

Logarithms

exponents and logarithms	$a^{x}=b \Leftrightarrow x=\log _{a}(b)$
	$\log _{a}(x)+\log _{a}(y)=\log _{a}(x y)$
logarithmic laws	$\log _{a}(x)-\log _{a}(y)=\log _{a}\left(\frac{x}{y}\right)$
	$\log _{a}\left(x^{n}\right)=n \log _{a}(x)$
	$\log _{a}(x)=\frac{\log _{b}(x)}{\log _{b}(a)}$

Calculus

$\frac{d}{d x} x^{n}=n x^{n-1}$		$\int x^{n} d x=\frac{x^{n+1}}{n+1}+c$
$\frac{d}{d x} e^{x}=e^{x}$		$\int e^{x} d x=e^{x}+c$
$\frac{d}{d x} \ln (x)=\frac{1}{x}$		$\int \frac{1}{x} d x=\ln (x)+c$
$\frac{d}{d x} \sin (x)=\cos (x)$		$\int \sin (x) d x=-\cos (x)+c$
$\frac{d}{d x} \cos (x)=-\sin (x)$		$\int \cos (x) d x=\sin (x)+c$
chain rule	If $\quad h(x)=f(g(x))$ then $h^{\prime}(x)=f^{\prime}(g(x)) g^{\prime}(x)$	If $\quad y=f(u)$ and $u=g(x)$ then $\frac{d y}{d x}=\frac{d y}{d u} \times \frac{d u}{d x}$
product rule	If $\quad h(x)=f(x) g(x)$ then $h^{\prime}(x)=f(x) g^{\prime}(x)+f^{\prime}(x) g(x)$	$\frac{d}{d x}(u v)=u \frac{d v}{d x}+v \frac{d u}{d x}$
quotient rule	If $\quad h(x)=\frac{f(x)}{g(x)}$ then $h^{\prime}(x)=\frac{f^{\prime}(x) g(x)-f(x) g^{\prime}(x)}{(g(x))^{2}}$	$\frac{d}{d x}\left(\frac{u}{v}\right)=\frac{v \frac{d u}{d x}-u \frac{d v}{d x}}{v^{2}}$

Trigonometry

cosine rule	$c^{2}=a^{2}+b^{2}-2 a b \cos (C)$
sine rule	$\frac{a}{\sin (A)}=\frac{b}{\sin (B)}=\frac{c}{\sin (C)}$
area of a triangle	$\operatorname{area}=\frac{1}{2} b c \sin (A)$
Pythagorean identity	$\sin ^{2}(A)+\cos ^{2}(A)=1$

Statistics

binomial theorem	$(x+y)^{n}=x^{n}+\binom{n}{1} x^{n-1} y+\ldots+\binom{n}{r} x^{n-r} y^{r}+\ldots+y^{n}$	
binomial probability	$P(X=r)=\binom{n}{r} p^{r}(1-p)^{n-r}$	
discrete random variable X	mean	$E(X)=\mu=\sum p_{i} x_{i}$
	variance	$\operatorname{Var}(X)=\sum p_{i}\left(x_{i}-\mu\right)^{2}$
continuous random variable X	mean	$E(X)=\mu=\int_{-\infty}^{\infty} x p(x) d x$
	variance	$\operatorname{Var}(X)=\int_{-\infty}^{\infty}(x-\mu)^{2} p(x) d x$
binomial distribution	mean	$n p$
	variance	$n p(1-p)$
sample proportion	mean	p
	standard deviation	$\sqrt{\frac{p(1-p)}{n}}$
approximate confidence interval for p	$\left(\hat{p}-z \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}, \hat{p}+z \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}\right)$	
general addition rule for probability	$P(A \cup B)=P(A)+P(B)-P(A \cap B)$	
probability of independent events	$P(A \cap B)=P(A) \times P(B)$	
conditional probability	$P(A \mid B)=\frac{P(A \cap B)}{P(B)}$	

