Mathematical Methods

Paper 2 - Technology-active

General instruction

- Work in this book will not be marked.

Section 1

QUESTION 1

The scores obtained on a test can be assumed to be normally distributed with a mean of 102 and a standard deviation of 19 .

What proportion of scores are over 113?
(A) 0.2813
(B) 0.5789
(C) 0.7187
(D) 0.8216

QUESTION 2

A substance is being heated such that its temperature T in ${ }^{\circ} \mathrm{C}$ after t minutes is given by the function $T=2 e^{0.5 t}$ The first integer value of t for which the instantaneous rate of change of temperature is greater than $100^{\circ} \mathrm{C}$ per minute is
(A) $t=10$
(B) $t=9$
(C) $t=8$
(D) $t=7$

QUESTION 3

A random sample of people were surveyed about the most important factor when deciding where to shop. The results appear in the table.

Factor	Percentage (\%)
Price	40
Quality of merchandise	30
Service	15
Shopping environment	15

If the sample size was 1200 , the approximate 95% confidence interval for the proportion of people who identified price as the most important factor is
(A) $(0.395,0.405)$
(B) $(0.386,0.414)$
(C) $(0.377,0.423)$
(D) $(0.372,0.428)$

QUESTION 4

Using the trapezoidal rule with an interval size of 1 , the approximate value of the integral $\int_{0}^{3} 0.5^{x} d x$ is
(A) 1.25
(B) 1.26
(C) 1.31
(D) 1.88

QUESTION 5

Solve for x given that $\log _{3}(x-1)=2$.
(A) 7
(B) 8
(C) 9
(D) 10

QUESTION 6

When seeds of a certain variety of flower are planted, the probability of each seed germinating is 0.8 .
If eight seeds are planted, what is the probability that at least six seeds will germinate?
(A) 0.797
(B) 0.503
(C) 0.294
(D) 0.001

QUESTION 7

Determine $f(x)$, given $f^{\prime}(x)=6 x^{2}+\frac{1}{x^{2}}+\frac{1}{x}$ and $f(1)=5$.
(A) $f(x)=2 x^{3}+\frac{3}{x^{3}}+\ln (x)-1$
(B) $f(x)=2 x^{3}-\frac{1}{x}+\ln (x)+4$
(C) $f(x)=2 x^{3}-\frac{1}{x}+\frac{2}{x^{2}}+2$
(D) $f(x)=2 x^{3}+\frac{3}{x^{3}}+\frac{2}{x^{2}}-2$

QUESTION 8

The displacement (in metres) of a particle is given by $s(t)=-3 \cos (t)+2 \sin (t)$, where t is in seconds.
The instantaneous velocity of the particle at time $t=\frac{\pi}{2}$ seconds is
(A) $-3 \mathrm{~m} \mathrm{~s}^{-1}$
(B) $-2 \mathrm{~m} \mathrm{~s}^{-1}$
(C) $2 \mathrm{~m} \mathrm{~s}^{-1}$
(D) $3 \mathrm{~m} \mathrm{~s}^{-1}$

QUESTION 9

The graphs of the functions $f(x)=2 e^{x}+5$ and $g(x)=\frac{3}{e^{x}}$ intersect at point A. Determine the coordinates of
point A.
(A) $(1.609,15)$
(B) $(1.099,1)$
(C) $(0.4065,2)$
(D) $(-0.693,6)$

QUESTION 10

An object travels in a straight line so that its velocity at time t seconds is given by $v(t)=2 t+\sin (2 t)$. Determine the expression for acceleration as a function of time.
(A) $a(t)=2+2 \cos (2 t)$
(B) $\quad a(t)=2-\frac{1}{2} \cos (2 t)$
(C) $a(t)=t^{2}+2 \cos (2 t)$
(D) $\quad a(t)=t^{2}-\frac{1}{2} \cos (2 t)$

Licence: https://creativecommons.org/licenses/by/4.0 | Copyright notice: www.qcaa.qld.edu.au/copyright — lists the full terms and conditions, which specify certain exceptions to the licence.|
Attribution: © State of Queensland (QCAA) 2021

