Mathematical Methods marking guide

Sample external assessment 2020

Paper 2: Technology-active (60 marks)

Assessment objectives

This assessment instrument is used to determine student achievement in the following objectives:

1. select, recall and use facts, rules, definitions and procedures drawn from Units 3 and 4
2. comprehend mathematical concepts and techniques drawn from Units 3 and 4
3. communicate using mathematical, statistical and everyday language and conventions
4. evaluate the reasonableness of solutions
5. justify procedures and decisions by explaining mathematical reasoning
6. solve problems by applying mathematical concepts and techniques drawn from Units 3 and 4.

Introduction

The Queensland Curriculum and Assessment Authority (QCAA) has developed mock external assessments for each General senior syllabus subject to support the introduction of external assessment in Queensland.
An external assessment marking guide (EAMG) has been created specifically for each mock external assessment.

The mock external assessments and their marking guides were:

- developed in close consultation with subject matter experts drawn from schools, subject associations and universities
- aligned to the external assessment conditions and specifications in General senior syllabuses
- developed under secure conditions.

Purpose

This document consists of an EAMG and an annotated response.
The EAMG:

- provides a tool for calibrating external assessment markers to ensure reliability of results
- indicates the correlation, for each question, between mark allocation and qualities at each level of the mark range
- informs schools and students about how marks are matched to qualities in student responses.

Mark allocation

Where a response does not meet any of the descriptors for a question or a criterion, a mark of ' 0 ' will be recorded.

Where no response to a question has been made, a mark of ' N ' will be recorded.

External assessment marking guide

Multiple-choice

Question	Response
1	A
2	D
3	B
4	A
5	A
6	C
7	C
8	A
9	D
10	C

Short response

Question 11 (4 marks)

Sample response	The response
a) $P=0.06$	correctly determines P [1 mark]
b) $\quad 2.06=\log _{10}\left(\frac{p_{i}}{8.71 \times 10^{-6}}\right)$	establishes logarithmic equation [1 mark]
Using application on GDC	
$p_{i}=0.001$	determines p_{i} [1 mark]
Increasing the P value by 2 increases the p_{i} value (chance of possible impact) by a factor of 100 (not 1000 times as stated).	evaluates reasonableness of the statement [1 mark]

Question 12 (5 marks)

Sample response
a) The situation consists of 45 repeated independent trials and each trial results in two possible outcomes only. I.e. donor is a universal donor or donor is not a universal donor.
b) mean $=45 \times 0.09=4.05$
standard deviation $=\sqrt{45 \times 0.09 \times 0.91}$ $=1.92$
c) Using Binomial probability application on GDC $n=45, p=0.09$, lower $=0$, upper $=3$
$P(x \leq 3)=0.41$

The response
identifies the relevant concept used [1 mark]
correctly determines the mean [1 mark]
correctly determines the standard deviation [1 mark]
uses an appropriate mathematical representation [1 mark]
correctly determines the probability [1 mark]

Sample response
a) $\quad M(t)=\left(16+3 t^{2}\right)^{\frac{-1}{2}}$

Using chain rule
$M^{\prime}(t)=-3 t\left(16+3 t^{2}\right)^{\frac{-3}{2}}$
b) $\quad N(t)=\frac{-600}{\sqrt{16+3 t^{2}}}+c$
c) $N^{\prime}(4)=1800 \times 4 \times\left(16+3 \times 4^{2}\right)^{\frac{-3}{2}}$ $N^{\prime}(4)=14.063$
d) Given $N(0)=0$
$N(0)=0=\frac{-600}{\sqrt{16}}+c$
$c=150$
$N(4)=\frac{-600}{\sqrt{16+48}}+150$
$N(4)=75$

The response
provides a statement identifying the use of the chain rule [1 mark]
correctly determines the derivative [1 mark]
correctly determines the indefinite integral [1 mark]
correctly determines $N^{\prime}(4)$ [1 mark]
determines c [1 mark]
determines $N(4)$ [1 mark]

Sample response

$$
C^{\circ}=71.97^{\circ} \text { or } 108.03^{\circ}
$$

$$
\therefore B^{\circ}=83.03^{\circ} \text { or } 46.97^{\circ}
$$

$$
\begin{aligned}
& \text { Using Sine rule: } \\
& \frac{b}{\sin 83.03^{\circ}}=\frac{12}{\sin 25^{\circ}}
\end{aligned}
$$

$$
b=28.18
$$

$$
\frac{b}{\sin 46.97^{\circ}}=\frac{12}{\sin 25^{\circ}}
$$

$$
b=20.76
$$

The response
uses convention for labelling triangles to construct a diagram [1 mark]
correctly establishes an equation in C° [1 mark]
determines solutions for angle C [1 mark]
determines solutions for angle B [1 mark]
determines associated lengths b [1 mark]

Sample response
a) $n=100, p=0.64$
$\sigma=\sqrt{\frac{0.64 \times 0.36}{100}}=0.048$
Using statistical application on GDC
$P(\hat{p}>0.7)=0.11$
b) $0.04=1.96 \sqrt{\frac{0.64 \times 0.36}{n}}$

Using application on GDC
$n \sim 553$
c) $0.02=1.96 \sqrt{\frac{0.64 \times 0.36}{n}}$

Using application on GDC
$n \sim 2213$
\therefore halving the margin of error has resulted in a sample size that is four times as large
d) Sample proportion is $\hat{p}=0.64$ and the sample size is $25, \therefore$ the number of people aged 16 and over in Australia who would support changing single use plastic bags is $0.64 \times 25=16$

$$
\begin{aligned}
P(\hat{p}=0.64) & =P(X=16) \\
& =\binom{25}{16} 0.64^{16} \times 0.36^{9} \\
& =0.16
\end{aligned}
$$

The response
correctly determines the mean and standard deviation [1 mark]
determines probability [1 mark]
establishes equation using given information and confidence interval definition [1 mark]
determines reasonable value for size of sample [1 mark]
establishes equation using given information and confidence interval definition [1 mark]
justifies decision using mathematical reasoning [1 mark]
correctly determines the number of people that support the change [1 mark]
correctly determines the probability [1 mark]

Question 16 (4 marks)

Sample response

$(A B)^{2}=53^{2}+65^{2}-2 \times 53 \times 65 \cos 106^{\circ}$
$A B=94.5153 \mathrm{~km}$

Time for Ship B to travel this distance

$$
t=\frac{94.5153}{30}=3.15 \text { hours }
$$

The response
communicates the information using an appropriate mathematical representation [1 mark]
correctly determines the angle at $\mathrm{R}\left(65^{\circ}\right)$ [1 mark]
determines distance AB [1 mark]
determines time [1 mark]

Question 17 (3 marks)

Sample response	The response
Using application on GDC to determine quadratic model $p(t)=0.014 t^{2}+.083 t+7$	correctly determines the model for $p(t)$ [1 mark]
	Amount of pollution $=\int_{0}^{30} p(t) d t$
[1 mark $]$	
Using application on GDC: Amount of pollution $=373$ units	determines total amount of pollution $[\mathbf{1}$ mark]

Sample response
a) $M^{\prime}(t)=-A b t e^{-b t}+A e^{-b t}$
$M^{\prime}(2)=0=-2 A b e^{-2 b}+A e^{-2 b}$
$0=A e^{-2 b}(-2 b+1)$
$\therefore b=\frac{1}{2}$
$M(t)=A t e^{\frac{-t}{2}}$
Using given information
($(2,120)$ lies on the curve)
$120=2 A e^{-1}$
$A=60 e$
b) Use graphing application on GDC

$(2,120)$ is the maximum point of the model as given in the question

The response
correctly determines the derivative [1 mark]
determines b [1 mark]
determines exact value of A [1 mark]
uses an appropriate mathematical representation to communicate approach [1 mark]
evaluates reasonableness of solution [1 mark]

Question 19 (5 marks)

Sample response

$$
B-A \sim N\left(78-80,12^{2}+10^{2}\right)
$$

Mean $=-2$
Standard deviation $=\sqrt{244}$

Contestant B is faster when
Time $_{\text {Contestant } B}-$ Time $_{\text {Contestant } A}<0$

Use normal probability application on GDC
lower limit $=-100$, upper limit $=0$,
mean $=-2, \sigma=15.6205$
\therefore approximately 55% chance that contestant B
will run the maze faster than contestant A

The response
recognises use of normally distributed variable for difference of times of contestants [1 mark]
correctly determines the values for the mean and standard deviation [1 mark]
justifies procedure used to determine the solution [1 mark]
uses an appropriate mathematical representation to communicate approach [1 mark]
solves for probability [1 mark]

Question 20 (5 marks)

Sample response

Determine horizontal distance to Fence B
$4=\ln (5 x+e)-1$
Using solving application on GDC
$x=29.139$
Area of paddock
$=\int_{0}^{29.139} \ln (5 x+e)-1 d x$
$=89.5917 \mathrm{~km}^{2}$

Half the area $=44.7958 \mathrm{~km}^{2}$
$\int_{0}^{k} \ln (5 x+e)-1 d x=44.7958 \mathrm{~km}^{2}$
Using solving application on GDC
$k=17.2433$

The farmer should locate the fence approximately 17.24 kilometres from the point 0 .

The response
correctly determines horizontal distance to Fence B [1 mark]
determines the area under the curve [1 mark]
communicates appropriate mathematical representation (definite integral with unknown upper limit) [1 mark]
solves for placement of fence [1 mark]

shows logical organisation communicating key steps

