Mathematical Methods marking guide

Sample external assessment 2020

Paper 1: Technology-free (60 marks)

Assessment objectives

This assessment instrument is used to determine student achievement in the following objectives:

1. select, recall and use facts, rules, definitions and procedures drawn from Units 3 and 4
2. comprehend mathematical concepts and techniques drawn from Units 3 and 4
3. communicate using mathematical, statistical and everyday language and conventions
4. evaluate the reasonableness of solutions
5. justify procedures and decisions by explaining mathematical reasoning
6. solve problems by applying mathematical concepts and techniques drawn from Units 3 and 4.

Introduction

The Queensland Curriculum and Assessment Authority (QCAA) has developed mock external assessments for each General senior syllabus subject to support the introduction of external assessment in Queensland.
An external assessment marking guide (EAMG) has been created specifically for each mock external assessment.

The mock external assessments and their marking guides were:

- developed in close consultation with subject matter experts drawn from schools, subject associations and universities
- aligned to the external assessment conditions and specifications in General senior syllabuses
- developed under secure conditions.

Purpose

This document consists of an EAMG and an annotated response.
The EAMG:

- provides a tool for calibrating external assessment markers to ensure reliability of results
- indicates the correlation, for each question, between mark allocation and qualities at each level of the mark range
- informs schools and students about how marks are matched to qualities in student responses.

Mark allocation

Where a response does not meet any of the descriptors for a question or a criterion, a mark of ' 0 ' will be recorded.

Where no response to a question has been made, a mark of ' N ' will be recorded.

External assessment marking guide

Multiple-choice

Question	Response
1	D
2	A
3	A
4	B
5	B
6	D
7	A
8	A
9	C
10	A

Short response

Question 11 (5 marks)
Sample response
The response
a) $\frac{3}{x}$
b) Using the product rule

$$
-x^{3} \sin \left(x^{4}+1\right) \cdot 4 x^{3}+\cos \left(x^{4}+1\right) \cdot 3 x^{2}
$$

c) $\frac{3 e^{4 x}}{4}+C$
provides a statement identifying the use of the product rule [1 mark]
correctly determines the first term [1 mark] correctly determines the second term [1 mark]
correctly determines the integral [1 mark]

The response
a) $x=\log _{6} 9+\log _{6} 4$
$=\log _{6} 36$
$\begin{aligned} 36 & =6^{x} \\ x & =2\end{aligned}$
$x=2$

Method 1: Changing to index form
b) $x=\log _{64} 16$

$$
\begin{aligned}
& 16=64^{x} \\
& 4^{2}=4^{3 x} \\
& 3 x=2 \\
& x=\frac{2}{3}
\end{aligned}
$$

OR

Method 2: Using the change of base rule
b) $x=\frac{\log _{4} 16}{\log _{4} 64}$

$$
x=\frac{2}{3}
$$

correctly simplifies the expression [1 mark]
correctly establishes the index equation [1 mark]
correctly simplifies the expression [1 mark]

OR for Method 2

correctly establishes the logarithmic expression using base 4 [$\mathbf{1}$ mark]
correctly simplifies the expression [1 mark]

Sample response
a) $2 x+4=25$

$$
x=\frac{21}{2}
$$

b) $\ln \left(\frac{7-x}{10}\right)=\ln (x)$

$$
\frac{7-x}{10}=x
$$

$$
x=\frac{7}{11}
$$

The response
correctly develops the linear equation [1 mark]
correctly determines x [1 mark]
correctly develops the linear equation [1 mark]

Sample response
a) $a=\frac{d}{d t}\left(\frac{1}{\pi}+3 \sin (t)\right)$

$$
a=3 \cos (t)
$$

b) $s=\int \frac{1}{\pi}+3 \sin (t) d t$

$$
\begin{aligned}
& s=\frac{t}{\pi}-3 \cos (t)+c \\
& \text { Given } s\left(\frac{\pi}{3}\right)=4 \\
& 4=\frac{\frac{\pi}{3}}{\pi}-3 \cos \left(\frac{\pi}{3}\right)+c \\
& c=4-\frac{1}{3}+\frac{3}{2} \\
& c=\frac{31}{6} \\
& \therefore s=\frac{t}{\pi}-3 \cos (t)+\frac{31}{6}
\end{aligned}
$$

The response
provides a statement identifying the use of derivatives [1 mark]
correctly determines the derivative [1 mark]
correctly determines the integral of $\frac{1}{\pi}$ [1 mark]
correctly determines the integral of $3 \sin (t)$ [1 mark]
determines constant for displacement function
[1 mark]

Question 15 (9 marks)

Sample response	The response
a) $f^{\prime}(x)=0=x(2-x) e^{-x+4}$ Use null factor theorem $x=0,2$	provides a statement identifying the x-intercepts of $f^{\prime}(x)$ as the critical points [1 mark]
Use given graph of $f(x)$ to identify maximum at $x=2$ Maximum point $(2, f(2))=\left(2,4 e^{2}\right)$	correctly determines the coordinates of the maximum point [1 mark]
b) $f^{\prime \prime}(2)=(4-8+2) e^{2}$	substitutes value into second derivative [1 mark]
$f^{\prime \prime}(x)<0 \therefore$ maximum	verifies nature of stationary point [1 mark]

c) $f^{\prime \prime}(x)=0$

$$
=\left(x^{2}-4 x+2\right) e^{-x+4}
$$

Use null factor theorem

$$
\left(x^{2}-4 x+2\right)=0
$$

Solving the quadratic equation:
$x=\frac{4 \pm \sqrt{8}}{2}$
d) $f^{\prime \prime}(x)<0$ curve is concave down or $f^{\prime \prime}(x)>0$ curve is concave up
for $\frac{4-\sqrt{8}}{2}<x<\frac{4+\sqrt{8}}{2}$ the curve is concave down
for $x<\frac{4-\sqrt{8}}{2}$ and $x>\frac{4+\sqrt{8}}{2}$ the curve is concave up
correctly establishes the quadratic equation [1 mark]
correctly determines the x - coordinates of the two points of inflection [1 mark]
provides evidence of relationship between concavity and second derivative [1 mark]
determines interval where curve is concave down [1 mark]
determines intervals where curve is concave up [1 mark]

Question 16 (5 marks)

Sample response
The response
$y^{\prime \prime}=6 x+2 a$
Given point of inflection $(1,6)$
Therefore
$0=6+2 a$
$a=-3$
Point of inflection is a point on the function

Therefore
$b=7$
$\therefore y=x^{3}-3 x^{2}+7 x+1$

Gradient of tangent at any point
$y^{\prime}(x)=3 x^{2}-6 x+7$
Gradient of tangent at $(1,6)$
$y^{\prime}(1)=4$

Equation of tangent at $(1,6)$
$y=4 x+2$

Sample response

$$
\begin{aligned}
& f(x)=\left\{\begin{array}{cc}
a+b x^{2} & 0 \leq x \leq 1 \\
0 & \text { otherwise }
\end{array}\right. \\
& \text { pdf } \therefore \int_{0}^{1} a+b x^{2} d x=1 \\
& a x+\left.\frac{b x^{3}}{3}\right|_{0} ^{1}=1 \\
& 3 a+b=3 \text { (i) } \\
& E(X)=\int_{0}^{1} x\left(a+b x^{2}\right) d x=\frac{3}{5} \\
& \frac{a x^{2}}{2}+\left.\frac{b x^{4}}{4}\right|_{0} ^{1}=\frac{3}{5} \\
& 10 a+5 b=12 \text { (ii) } \\
& \text { From (i) } b=-3 a+3 \\
& \text { Substitute into (ii) } \\
& 10 a-15 a+15=12 \\
& a=\frac{3}{5} \\
& \text { Substitute } a \text { into (i) } \\
& b=\frac{6}{5}
\end{aligned}
$$

The response
correctly determines the definite integral equation using pdf definition [1 mark]
correctly generates an equation in a and b [$\mathbf{1}$ mark]
correctly determines the definite integral equation using $E(X)$ definition [1 mark]
correctly generates the second equation in a and b [1 mark]
indicates use of simultaneous solving procedure [1 mark]
determines a and b [1 mark]
shows logical organisation communicating key steps [1 mark]

Sample response
Slope of the tangent $y^{\prime}=1+\ln (x)$
Point of tangency $\left(x_{0}, x_{0} \ln \left(x_{0}\right)\right.$
The equation of the line passing through $(0,-e)$
$y+e=x\left(1+\ln \left(x_{0}\right)\right)(i)$

Substituting the coordinates of the point of tangency on the curve into (i)
$x_{0} \ln \left(x_{0}\right)+e=x_{0}+x_{0} \ln \left(x_{0}\right)$
Solving
$\rightarrow x_{0}=e$

Point on the curve is (e, e)
Slope of the tangent:
$1+\ln (e)=2$

Equation of tangent:
$y=2 x-e$

The response
correctly determines the expression for the gradient of the tangent line [1 mark]
correctly determines the tangent equation of the line passing through the given point [1 mark]
determines x-coordinate of point on curve and tangent line [1 mark]
determines coordinates of point on curve and tangent line [1 mark]
determines equation of tangent [1 mark]
shows logical organisation communicating key steps [1 mark]

