Mathematical Methods

Paper 2 - Technology-active

General instruction

- Work in this book will not be marked.

Section 1

QUESTION 1

The limit of $\frac{12^{h}-1}{h}$ as h approaches 0 is closest to
(A) 0.0
(B) 1.0
(C) 2.5
(D) 3.0

QUESTION 2

The pH of a substance is a measure of its acidity and is given by the formula $\mathrm{pH}=-\log _{10}\left[\mathrm{H}^{+}\right]$where $\left[\mathrm{H}^{+}\right]$is the concentration of hydrogen ions in moles per litre. If a solution has a pH equal to 0.2 , the concentration of hydrogen ions in moles per litre is closest to
(A) 0.32
(B) 0.63
(C) 0.70
(D) 1.58

QUESTION 3

Let R be the region enclosed by the graph of $y=x e^{x}$, the x-axis, and the lines $x=-1$ and $x=1$.
The area of R is closest to
(A) 0.74
(B) 1.26
(C) 2.35
(D) 3.09

QUESTION 4

Consider the function $f(x)=\log _{p}(x+q)$ where $p>1$ and $0<q<1$.
Which of the following could be the graph of $f(x)$?
(A)

(B)

(C)

(D)

QUESTION 5

An object moves in a straight line with a velocity v given by

$$
v(t)=40\left(e^{-t}-e^{-2 t}\right) \mathrm{m} \mathrm{~s}^{-1} \text { where } t \geq 0
$$

The object is at the origin initially. The displacement-time graph in the first 6 seconds is
(A)

(B)

(C)

(D)

QUESTION 6

Oil is leaking from a tanker at the rate of $r(t)=9000 e^{-0.2 t}$ litres per hour, where t is in hours.
Determine how much oil leaks from the tanker (to the nearest litre) from time $t=0$ to time $t=10$.
(A) 38910 litres
(B) 8756 litres
(C) 7782 litres
(D) 1556 litres

QUESTION 7

The records of a shoe manufacturer show that 10% of shoes made are defective.
Assuming independence, the probability of getting 2 defective shoes in a batch of 20 is
(A) 0.1937
(B) 0.2852
(C) 0.3917
(D) 0.6083

QUESTION 8

Determine the size of angle A in the triangle.

Not drawn to scale
(A) 48.5°
(B) 61.4°
(C) 118.6°
(D) 131.5°

QUESTION 9

The displacement of a particle (in metres) at time t (in seconds) is represented by the function

$$
s(t)=t \ln (t)-t, 0<t<4
$$

Determine the approximate acceleration of the particle at time $t=3$.
(A) $0.66 \mathrm{~m} \mathrm{~s}^{-2}$
(B) $0.33 \mathrm{~m} \mathrm{~s}^{-2}$
(C) $-0.33 \mathrm{~m} \mathrm{~s}^{-2}$
(D) $-0.66 \mathrm{~m} \mathrm{~s}^{-2}$

QUESTION 10

The approximate value of x where the graph of the function $y=x^{3}+6 x^{2}+7 x-2 \cos (x)$ changes concavity is
(A) -3.26
(B) -2.85
(C) -2.20
(D) -1.89

Licence: https://creativecommons.org/licenses/by/4.0 | Copyright notice: www.qcaa.qld.edu.au/copyright — lists the full terms and conditions, which specify certain exceptions to the licence. |
Attribution: © State of Queensland (QCAA) 2020

