Mathematical Methods marking guide

External assessment

Paper 1: Technology-free (60 marks)

Paper 2: Technology-active (60 marks)

Assessment objectives

This assessment instrument is used to determine student achievement in the following objectives:

1. select, recall and use facts, rules, definitions and procedures drawn from Units 3 and 4
2. comprehend mathematical concepts and techniques drawn from Units 3 and 4
3. communicate using mathematical, statistical and everyday language and conventions
4. evaluate the reasonableness of solutions
5. justify procedures and decisions by explaining mathematical reasoning
6. solve problems by applying mathematical concepts and techniques drawn from Units 3 and 4.

Purpose

This document is an External assessment marking guide (EAMG).
The EAMG:

- Provides a tool for calibrating external assessment markers to ensure reliability of results
- Indicates the correlation, for each question, between mark allocation and qualities at each level of the mark range
- Informs schools and students about how marks are matched to qualities in student responses.

Mark allocation

Where a response does not meet any of the descriptors for a question or a criterion, a mark of ' 0 ' will be recorded. Where no response to a question has been made, a mark of ' N ' will be recorded.

Allow FT mark(s) - refers to 'follow through', where an error in the prior section of working is used later in the response, a mark (or marks) for the rest of the response can still be awarded so long as it still demonstrates the correct conceptual understanding or skill in the rest of the response.

This mark may be implied by subsequent working - the full mathematical reasoning and/or working, as outlined in the sample response and associated mark, is not evident in the student response, but by virtue of subsequent working there is sufficient evidence to award mark(s).

External assessment marking guide

Paper 1

Multiple choice

Question	Response
1	D
2	A
3	D
4	B
5	B
6	D
7	C
8	C
9	A
10	

Q	Sample response	The response:
11	a) $\quad f^{\prime}(x)=\frac{-\cos (x)}{(\sin (x))^{2}}$ b) $\begin{aligned} f^{\prime}(x) & =-x^{2} e^{-x}+2 x e^{-x} \\ & =x e^{-x}(-x+2) \end{aligned}$	correctly determines the derivative [1 mark] correctly determines the derivative in expanded form [1 mark] determines factorised form of derivative [1 mark]
12	a) $\begin{aligned} & a(0)=\pi \cos (\pi \times 0) \\ & a(0)=\pi \mathrm{m} \mathrm{~s}^{-2} \end{aligned}$ b) $\begin{aligned} & \int a(t) d t=v(t) \\ & v(t)=\sin (\pi t)+c \end{aligned}$ Given $v=0.5$ when $t=1$ $\begin{aligned} 0.5 & =\sin (\pi)+c \\ c & =0.5 \\ v(0) & =\sin (0)+0.5 \end{aligned}$ Initial velocity is $0.5 \mathrm{~m} \mathrm{~s}^{-1}$ c) $\begin{aligned} & \int v(t) d t=s(t) \\ & s(t)=\frac{-1}{\pi} \cos (\pi t)+0.5 t+c \end{aligned}$ Given $s=0$ when $t=0$ $\begin{aligned} & 0=\frac{-1}{\pi} \cos (0)+0.5 \times 0+c \\ & c=\frac{1}{\pi} \\ & s(1)=\frac{-1}{\pi} \cos (\pi)+0.5+\frac{1}{\pi} \\ & s(1)=0.5+\frac{2}{\pi} \mathrm{~m} \end{aligned}$	correctly determines the initial acceleration [1 mark] correctly determines the general function $v(t)$ [1 mark] determines initial velocity [1 mark] determines general function $s(t)$ [1 mark] determines displacement after one second [1 mark]

$f^{\prime}(x)=2 \ln (x)+(\ln (x))^{2}$
Stationary point $f^{\prime}(x)=0$
Stationary point $f^{\prime}(x)=0$
$0=2 \ln (x)+(\ln (x))^{2}$
$0=\ln (x)(2+\ln (x))$

$$
\ln (x)=0 \therefore x=1
$$

b) Stationary point $f^{\prime}(x)=0$

From a)

$$
2+\ln (x)=0
$$

$$
\ln (x)=-2
$$

$$
x=e^{-2}
$$

$$
\therefore y=e^{-2} \times\left(\ln e^{-2}\right)^{2}=4 e^{-2}
$$

$$
\text { so } A\left(e^{-2}, 4 e^{-2}\right)
$$

c) Using chain rule

$$
f^{\prime \prime}(x)=\frac{2}{x}+\frac{2}{x} \ln (x)
$$

$$
\text { Point of inflection } f^{\prime \prime}(x)=0
$$

$$
0=\frac{2}{x}+\frac{2}{x} \ln (x)
$$

$$
0=\frac{2}{x}(1+\ln (x))
$$

$$
0=1+\ln (x) \rightarrow x=e^{-1}
$$

$$
\therefore p=-1
$$

correctly identifies that the derivative equals 0 [1 mark]
correctly shows there is a stationary point at $x=1$ [1 mark]
correctly establishes the equation in x [1 mark]
correctly determines the x-ordinate of A [1 mark]
determines y-ordinate of A [1 mark]
correctly establishes the equation in x equals 0 [1 mark]
determines p [1 mark]

Q	Sample response	The response:
14	$\begin{aligned} & \angle A B C=30^{\circ} \\ & \text { Area }=\frac{1}{2} \times a \times c \times \sin B \\ & \text { Area }=\frac{1}{2} \times 6 \times 3 \times \sin 30^{\circ} \\ & \text { Area }=\frac{9}{2} \mathrm{~m}^{2} \end{aligned}$	correctly substitutes into the area equation [1 mark] correctly determines the area [1 mark] correctly communicates the units [1 mark]
15	$\begin{aligned} & e^{x}=25 \\ & x=\ln (25) \end{aligned}$ Using log laws $\log _{4} \frac{x^{2}}{x-1}=1$ Change from log to index form $\begin{aligned} & \frac{x^{2}}{x-1}=4 \\ & x^{2}-4 x+4=0 \end{aligned}$ Factorising $x=2$	correctly determines x [1 mark] correctly establishes equation using log laws [1 mark] correctly establishes the quadratic equation [1 mark] determines x [1 mark]

Q Sample response
The response:
$16 f(x)$ changes concavity at certain points and is increasing and decreasing between
$x=0$ and $x=3$
and between
$x=3$ and $x=6$

Therefore, the sketch of $f^{\prime}(x)$ must be positive and negative (above and below the x-axis) for these intervals.

$f^{\prime}(x)$ has maximum and minimum points at approximately $x=0.8$ and $x=2.4$. Therefore, the sketch of $f^{\prime \prime}(x)$ will cross the x-axis at these points.

Diagram 1 is $f^{\prime \prime}(x)$
correctly identifies an appropriate method to determine $f^{\prime \prime}(x)$ graph [1 mark]
correctly determines a relevant feature of the graph of $f(x)$ [1 mark]
correctly determines a relevant feature for $f^{\prime \prime}(x)$ [1 mark] correctly identifies Diagram 1 [1 mark]

Q	Sample response	The response:
17	$\begin{aligned} & \text { At } t=0, V=100 \\ & V(0)=100=A e^{k \times 0} \\ & A=100 \\ & \therefore V(t)=100 e^{k t} \\ & V^{\prime}(t)=100 k e^{k t} \\ & \text { At } t=0, V^{\prime}(t)=-50 \\ & -50=100 k \\ & k=\frac{-1}{2} \\ & \text { So } V(t)=100 e^{-0.5 t} \text { and } \\ & V^{\prime}(t)=-50 e^{-0.5 t} \\ & \text { Determine } t \text { when } V^{\prime}(t)=\frac{-50}{7} \\ & \frac{1}{7}=e^{-0.5 t} \\ & -0.5 t=\ln \left(\frac{1}{7}\right) \\ & t=-2 \ln \left(\frac{1}{7}\right) \\ & t=\ln (49) \end{aligned}$	correctly determines A [1 mark] determines k [1 mark] establishes equation in t [1 mark] determines t [1 mark] determines t in required form [1 mark] shows logical organisation communicating key steps [1 mark]

18 Using y-intercepts
$1=3 \log _{2}(a)+b$ (i)
$5=-\log _{3}(c)+5$ (ii)
From (ii)
$c=1$

Using point of intersection $(2,4)$
$4=3 \log _{2}(2+a)+b$ (iii)
Solving simultaneously (i) and (iii)
$b=1-3 \log _{2}(a)$ (i)
$b=4-3 \log _{2}(2+a)$ (ii)
Equating
$1-3 \log _{2}(a)=4-3 \log _{2}(2+a)$
$3 \log _{2}(2+a)-3 \log _{2}(a)=3$
$3\left(\log _{2}\left(\frac{2+a}{a}\right)\right)=3$
$\frac{2+a}{a}=2$
$a=2$
$\therefore b=-2$
correctly determines a [1 mark]
correctly determines c [1 mark]
correctly establishes two equations in a and b [1 mark]
correctly selects procedure to solve for unknowns [1 mark]
determines b [1 mark]
shows logical organisation communicating key steps [1 mark]

19 Method 1
$f^{\prime}(x)=\frac{1}{k x}-\left(\frac{k(x+1)-k x}{(x+1)^{2}}\right)$
Stationary points $f^{\prime}(x)=0$
$0=\frac{1}{k x}-\left(\frac{k(x+1)-k x}{(x+1)^{2}}\right)$
$0=\frac{1}{k x}-\frac{k}{(x+1)^{2}}$
$0=x^{2}+\left(2-k^{2}\right) x+1$ (i)

The quadratic has real roots when discriminant ≥ 0
$\left(2-k^{2}\right)^{2}-4 \geq 0$
$2-k^{2} \geq \pm 2$
There is only ONE phi :-
$2-k^{2}= \pm 2$
$k=0$ (not valid)
and $k^{2}=4$ so
$k=2,-2$
Sub into (i) to determine the x-ordinate of the stationary point.
$\rightarrow x=1$
For $k=2$
$\therefore f^{\prime \prime}(x)=\frac{-1}{2 x^{2}}+\frac{4}{(x+1)^{3}}$
$f^{\prime \prime}(1)=\frac{-1}{2}+\frac{4}{8}$
$f^{\prime \prime}(1)=0$
For $k=-2$
$f^{\prime \prime}(x)=\frac{1}{2 x^{2}}-\frac{4}{(x+1)^{3}}$
correctly determines the quadratic equation to identify the stationary point/s [1 mark]
determines valid and non-valid solutions of k [$\mathbf{1} \mathbf{~ m a r k}$]
determines x-ordinate of stationary point [1 mark]

Q Sample response
The response:
$f^{\prime \prime}(1)=\frac{1}{2}-\frac{4}{8}$
$f^{\prime \prime}(1)=0$
For each k value, $x=1$ is the x-ordinate of both a
stationary point $\left(f^{\prime}(x)=0\right)$ and a point of inflection
($f^{\prime \prime}(x)=0$)
There is a point of horizontal inflection at $x=1$ when $k= \pm 2$
determines values of second derivative for both values of k [1 mark]
shows logical organisation communicating key steps [1 mark]

Method 2
$f^{\prime}(x)=\frac{1}{k x}-\left(\frac{k(x+1)-k x}{(x+1)^{2}}\right)$
Stationary points $f^{\prime}(x)=0$
$0=\frac{1}{k x}-\left(\frac{k(x+1)-k x}{(x+1)^{2}}\right)$
$\frac{1}{k x}=\frac{k}{(x+1)^{2}}$
$k^{2} x=(x+1)^{2}$
$k^{2}=\frac{(x+1)^{2}}{x}(\mathrm{i})$
$k= \pm \sqrt{\frac{(x+1)^{2}}{x}}$ (ii)

Point of inflection $f^{\prime \prime}(x)=0$
$\therefore 0=\frac{-1}{k x^{2}}+\frac{2 k}{(x+1)^{3}}$
$k^{2}=\frac{(x+1)^{3}}{2 x^{2}}$
sub into (i)

$$
\begin{aligned}
\frac{(x+1)^{2}}{x} & =\frac{(x+1)^{3}}{2 x^{2}} \\
2 x^{2}(x+1)^{2}-x(x+1)^{3} & =0 \\
x(x+1)^{2}(2 x-(x+1)) & =0 \\
x(x+1)^{2}(x-1) & =0 \\
x & =0,-1,1
\end{aligned}
$$

sub into (ii)
$x=0,-1$ non-valid solutions
Using $x=1$
correctly determines the first derivative [1 mark]
correctly establishes expression for k^{2} in terms of x [1 mark]

determines x values [1 mark]

determines valid and non-valid solutions of x [1 mark]

\mathbf{Q}	Sample response	The response:
	$k= \pm \sqrt{\frac{(1+1)^{2}}{1}}= \pm 2$	determines k values [1 mark]
For each k value $x=1$ is the x-ordinate of both a stationary point $\left(f^{\prime}(x)=0\right)$ and a point of inflection $\left(f^{\prime \prime}(x)=0\right)$ There is a point of horizontal inflection at $x=1$ when $k= \pm 2$		
		shows logical organisation communicating key steps $[\mathbf{1}$ mark]

20 Let $R(t)=$ radius of the tree trunk

$$
\begin{aligned}
R(t) & =\int 1.5+\sin \left(\frac{\pi t}{5}\right) d t \\
& =1.5 t-\frac{5}{\pi} \cos \left(\frac{\pi t}{5}\right)+c
\end{aligned}
$$

Given initial radius is 15 cm (end of first stage/beginning of second stage)

$$
\begin{aligned}
15 & =-\frac{5}{\pi}+c \\
c & =15+\frac{5}{\pi} \\
R(t) & =1.5 t-\frac{5}{\pi} \cos \left(\frac{\pi t}{5}\right)+15+\frac{5}{\pi}
\end{aligned}
$$

Volume of tree trunk $=500 \pi(R(t))^{2}$
Volume of tree trunk at $t=10$
$V_{10}=\pi \times(R(10))^{2} \times 500$
Volume of tree trunk at $t=0$
$V_{0}=\pi \times(R(0))^{2} \times 500$
$\rightarrow V_{10}=450000 \pi \mathrm{~cm}^{3}$ and $V_{0}=112500 \pi \mathrm{~cm}^{3}$
The mass of the tree is the density times the volume
and since the density is $1 \mathrm{~g} / \mathrm{cm}^{3}$
\therefore ratio of the tree trunk at $t=0$ and $t=10$ years
$=\frac{450000 \pi}{112500 \pi}$
$=4$
The tree has quadrupled in mass over this time.
correctly establishes an integrated expression for the radius of the tree [1 mark]
determines radius of the tree [1 mark]
identifies use of formula and radius to determine volume of tree trunk [1 mark]
determines volumes of tree trunk initially and at 10 years [1 mark]

determines ratio of mass [1 mark]

shows logical organisation communicating key steps [1 mark]

External assessment marking guide

Paper 2
Multiple choice

Question	Response
1	C
2	B
3	B
4	C
5	C
6	A
7	B
8	A
9	B
10	D

Q	Sample response	The response:
11	a) $5 \% \times 20=1$ b) $\begin{aligned} \text { Variance } & =n p(1-p) \\ & =0.95 \end{aligned}$ c) $n=20$ success $=p=0.05$ Number of successes $=0$ or 1 Using GDC P (at most 1 are underweight $)=0.7358$	correctly determines the expected number of the underweight packets [1 mark] correctly determines the variance of the underweight packets [1 mark] correctly uses an appropriate mathematical representation to communicate approach [1 mark] correctly determines the probability [1 mark]
12	a) $A(t)=45 \ln (t+1)+c$ $B(t)=3500 e^{0.03 t}+c$ Given $A(0)=5000, B(0)=3500$ $\begin{aligned} & A(t)=45 \ln (t+1)+5000 \\ & B(t)=3500 e^{0.03 t} \end{aligned}$ b) $\begin{aligned} & B(10)=3500 e^{0.3} \\ & B(10)=4724 \end{aligned}$	correctly determines the general population functions for City A [1 mark] correctly determines the general population functions for City B [1 mark] determines population functions for the two cities [1 mark] determines population of City B in 2028 [$\mathbf{1}$ mark]

Q Sample response
c) $45 \ln (t+1)+5000=3500 e^{0.03 t}$ Using GDC
$t=12.66$
\therefore during the year 2030 the populations will be the same.

13
a) $\hat{p}=\frac{102}{121}=0.84$
b) Using normal distribution
$\mu=0.9$
$\sigma=\sqrt{\frac{0.9 \times 0.1}{121}}$
Using GDC
$P(\hat{p}<0.85)$
$=0.0334$
c) There is 3.34% chance of shipping less than 85% of orders when the population parameter is 0.90 .
Observing a sample proportion of 0.843 (or even lower) would have occurred by chance less than 3.34% of the time if the retailer's claim is true. Therefore, we suspect that the retailer's claim is dubious.

The response:
uses an appropriate mathematical representation to communicate approach [1 mark]
determines time [1 mark]
determines the required time [1 mark]
correctly determines the sample proportion [1 mark]
correctly identifies the mean of the population [1 mark]
determines expression for standard deviation of the normal distribution [1 mark]
determines probability of producing sample proportion or less [1 mark]
identifies meaning of the probability of producing the sample proportion [1 mark]
evaluates reasonableness of the retailer's claim [1 mark]

Q14 Method 1: Interpreting the given equation as a CDF

Sample response
a) $\operatorname{pdf}(f(x))=\frac{d}{d x}\left(\frac{-10}{x}\right)$

$$
f(x)=\left\{\begin{array}{cc}
\frac{10}{x^{2}}, & 5 \leq x \leq 10 \\
0, & \text { otherwise }
\end{array}\right.
$$

b) $F(7)-F(5)=\frac{-10}{7}-\frac{-10}{5}$
$=\frac{4}{7}$
c) Mean $=\int_{5}^{10} \frac{10}{x} d x$

Using GDC

Mean $=6.93$ minutes

The response:
correctly identifies the use of the derivative of the cumulative distribution function [1 mark]
correctly determines the derivative of the cumulative distribution function (pdf) [1 mark]
uses appropriate convention to communicate the probability density function as a piecewise function with given domains [1 mark]
correctly determines the probability that there are 5 to 7 minutes between train arrivals [1 mark]
provides a statement identifying the use of expected value for a continuous random variable [1 mark]
determines mean time between arrivals [1 mark]

Q14 Method 2: Interpreting the given equation as a PDF
Sample response
The response:
a) $\quad F(x)=\int_{-\infty}^{x} f(t) d t$
$=\int_{5}^{x} 2-\frac{10}{t} d t$ for $5 \leq x \leq 10$
$\int_{5}^{x} 2-\frac{10}{t} d t=[2 t-10 \ln (t)]_{5}^{x}$
$=2\left(x-5 \ln \left(\frac{x}{5}\right)-5\right)$
$\therefore F(x)=\left\{\begin{array}{cc}0 & x<5 \\ 2\left(x-5 \ln \left(\frac{x}{5}\right)-5\right) & 5 \leq x \leq 10 \\ 1 & x>10\end{array}\right.$
correctly identifies the use of the integral of the probability distribution function [1 mark]
correctly determines the integral of the probability distribution function (CDF) [1 mark]
uses appropriate convention to communicate the cumulative distribution function as a piecewise function with given domains [1 mark]
b) $\quad F(7)-F(5)=2\left(7-5 \ln \left(\frac{7}{5}\right)-5\right)$

$$
-2\left(5-5 \ln \left(\frac{5}{5}\right)-5\right)
$$

$=0.6353$
correctly determines the probability that there are 5 to 7 minutes between train arrivals [1 mark]
c) Mean $=\int_{5}^{10} 2 x-10 d x$

> Using GDC

Mean $=25$ minutes
provides a statement identifying the use of expected value for a continuous random variable [1 mark]

Q	Sample response	The response:
15	a) Using trapezoidal rule: $\begin{aligned} & 11.12=\frac{1+3}{2}+\frac{3+2.6}{2}+\frac{2.6+2.2}{2}+\frac{2.2+x}{2}+\frac{x+1.76}{2} \\ & 3.92=1.98+x \\ & x=1.94 \mathrm{~m} \end{aligned}$ b) $\begin{aligned} & \int_{0}^{5} \frac{4 x}{x^{2}+1}+1 d x \\ & =11.5162 \mathrm{~m}^{2} \end{aligned}$	correctly establishes equation in x [1 mark] determines x [1 mark] correctly determines the area [1 mark]
16	Given $\mu=591$ Using GDC z-score associated with 65 th percentile $=0.38532$ $\begin{aligned} 0.38532 & =\frac{593-591}{\sigma} \\ \sigma & =5.1905 \end{aligned}$ Using GDC z -score associated with 20% rejection region $=$ -0.841621 To determine the smallest volume that will be accepted (x) $\begin{array}{r} -0.841621=\frac{x-591}{5.1905} \\ x=587 \mathrm{~mL} \end{array}$	correctly determines the z -score associated with the 65th percentile [1 mark] determines σ [1 mark] correctly determines the z-score associated with the 20% rejection region [1 mark] determines the smallest volume [1 mark]

Q	Sample response	The response:
17	$\hat{p}=\frac{303}{326}$ Using confidence interval formula (margin of error) $0.02=1.96 \times \sqrt{\frac{\frac{303}{326} \times \frac{23}{326}}{n}}$ Using GDC $n=629.778$ \therefore a sample of 630 lecturers would be required.	correctly determines the sample proportion [1 mark] establishes equation in n [1 mark] determines n [1 mark] determines reasonable value of n [1 mark]
18	Constructing the line $B D$ Using the cosine rule $\begin{aligned} & B D^{2}=4.1^{2}+7.6^{2}-2 \times 4.1 \times 7.6 \times \cos 117^{\circ} \\ & B D=10.142 \mathrm{~cm} \end{aligned}$ Using the cosine rule $10.142^{2}=5.4^{2}+D C^{2}-2 \times 5.4 \times D C \cos 62^{\circ}$ Using solve application GDC $D C=11.4865$ Perimeter of $A B C D$ $\begin{aligned} & =11.4865+5.4+4.1+7.6 \\ & =28.5865 \mathrm{~cm} \end{aligned}$	correctly determines $B D$ [1 mark] establishes equation in $D C$ [1 mark] determines $D C$ [1 mark] determines perimeter [1 mark]

Q Sample response
19 Downhill drive will correspond to domain where derivative is negative.
Graphing $D^{\prime}(x)$

The function is decreasing
$-10 \leq x<1.5$
The distance driving downhill
$\int_{-10}^{1.5} \sqrt{1+\left(D^{\prime}(x)\right)^{2}} d x$
Using GDC
$=11.5$ kilometres*
Time to travel 11.5 kilometres driving at $40 \mathrm{~km} /$ hour $t=\frac{11.5}{40}=0.29$ hours*

* Note: An erroneous answer of 0.33 hours, corresponding to a distance of 13.25 km , was obtained when students failed to ensure that x and $\mathrm{D}(\mathrm{x})$ were measured in the same units. This was awarded full marks as the length of a curve formula was unfamiliar to students.

The response:
correctly identifies values of x associated with downhill drive [1 mark]
correctly uses an appropriate mathematical representation [1 mark]

determines decreasing interval [1 mark]

establishes integral expression for the total distance travelled downhill [1 mark]
determines the distance travelled downhill [1 mark]
determines time travelling downhill [1 mark]
shows logical organisation communicating key steps
[1 mark]

Q Sample response
The response:

20	Method 1 $p_{1}=$ proportion of Town A who prefer to drink tea $p_{2}=$ proportion of Town B who prefer to drink tea The sample proportions are: $\begin{aligned} & \hat{p}_{1}=\frac{111}{216} \\ & \hat{p}_{2}=\frac{150}{257} \end{aligned}$ Using the 99% confidence interval for the difference of two proportions $\left.\begin{array}{l} \left(\frac{111}{216}-\frac{150}{257}-2.576 \sqrt{\frac{111}{\frac{11}{216}\left(1-\frac{111}{216}\right)}} 216\right. \\ 2.576 \sqrt{\frac{\frac{150}{257}\left(1-\frac{150}{257}\right)}{257}\left(1-\frac{111}{216}\right)}, \frac{\frac{111}{216}}{216}-\frac{150}{\frac{157}{257}\left(1-\frac{150}{257}\right)} \\ 257 \end{array}\right) .$ This interval contains zero; therefore, there is no evidence in the data to say that the two proportions are different, i.e. preference to drink tea does not depend on where the person lives.	correctly determines the sample proportions [1 mark] establishes confidence interval for the difference of two proportions [1 mark] determines 99\% confidence interval [1 mark] interprets 99\% confidence interval to determine equality of proportions [1 mark] shows logical organisation communicating key steps [1 mark]
20	Method 2 $p_{1}=$ proportion of Town A who prefer to drink coffee $p_{2}=$ proportion of Town B who prefer to drink coffee The sample proportions are:	

Q Sample response
The response:
$\hat{p}_{1}=\frac{105}{216}$
$\hat{p}_{2}=\frac{107}{257}$
Using the 99% confidence interval for the difference of two proportions
$\left(\left(\frac{105}{216}-\frac{107}{257}-2.576 \sqrt{\frac{\sqrt{\frac{105}{216}\left(1-\frac{105}{216}\right)}}{216}}+\frac{\frac{107}{\frac{257}{}\left(1-\frac{107}{257}\right)}}{257}, \frac{105}{216}-\frac{107}{257}+\right.\right.$
$\left.2.576 \sqrt{\frac{\frac{105}{\frac{216}{}\left(1-\frac{105}{216}\right)}}{216}+\frac{\frac{107}{257}\left(1-\frac{107}{257}\right)}{257}}\right)$
$=(-0.048,0.188)$

This interval contains zero; therefore, there is no evidence in the data to say that the two proportions are different, i.e. the preference to drink coffee does not depend on where the person lives.
correctly determines the sample proportions

[1 mark]

establishes confidence interval for the difference of two proportions [1 mark]
determines 99\% confidence interval [1 mark]
interprets 99\% confidence interval to determine equality of proportions [1 mark]
shows logical organisation communicating key steps [1 mark]

