Mathematical Methods 2019 v1.2

IA3 sample marking scheme

October 2023

Examination (15%)

This sample has been compiled by the QCAA to model one possible approach to allocating marks in an examination. It matches the examination mark allocations as specified in the syllabus ($\sim 60\%$ simple familiar, $\sim 20\%$ complex familiar and $\sim 20\%$ complex unfamiliar) and ensures that a balance of the objectives are assessed.

Assessment objectives

This assessment instrument is used to determine student achievement in the following objectives:

- 1. select, recall and use facts, rules, definitions and procedures drawn from all Unit 4 topics
- 2. comprehend mathematical concepts and techniques drawn from all Unit 4 topics
- 3. communicate using mathematical, statistical and everyday language and conventions
- 4. evaluate the reasonableness of solutions
- 5. justify procedures and decisions by explaining mathematical reasoning
- 6. solve problems by applying mathematical concepts and techniques drawn from all Unit 4 topics.

Instrument-specific marking guide (ISMG)

Criterion: Foundational knowledge and problem-solving

Assessment objectives

- 1. select, recall and use facts, rules, definitions and procedures drawn from all Unit 4 topics
- 2. comprehend mathematical concepts and techniques drawn from all Unit 4 topics
- 3. communicate using mathematical, statistical and everyday language and conventions
- 4. evaluate the reasonableness of solutions
- 5. justify procedures and decisions by explaining mathematical reasoning
- 6. solve problems by applying mathematical concepts and techniques drawn from all Unit 4 topics.

The student work has the following characteristics:	Cut-off	Marks
 consistently correct selection, recall and use of facts, rules, definitions and procedures; authoritative and accurate command of mathematical concepts and techniques; astute evaluation of the reasonableness of solutions and use of mathematical reasoning to correctly justify procedures and decisions; and fluent application of mathematical concepts and techniques to solve problems in a comprehensive range of simple familiar, complex familiar and complex unfamiliar situations. 		15
		14
 correct selection, recall and use of facts, rules, definitions and procedures; comprehension and clear communication of mathematical concepts and techniques; considered evaluation of the reasonableness of solutions and use of 	> 80%	13
mathematical reasoning to justify procedures and decisions; and proficient application of mathematical concepts and techniques to solve problems in simple familiar, complex familiar and complex unfamiliar situations.	> 73%	12
 thorough selection, recall and use of facts, rules, definitions and procedures; comprehension and communication of mathematical concepts and techniques; evaluation of the reasonableness of solutions and use of mathematical 	> 67%	11
reasoning to justify procedures and decisions; and application of mathematical concepts and techniques to solve problems in simple familiar and complex familiar situations.	> 60%	10
 selection, recall and use of facts, rules, definitions and procedures; comprehension and communication of mathematical concepts and techniques; 		9
evaluation of the reasonableness of some solutions using mathematical reasoning; and application of mathematical concepts and techniques to solve problems in simple familiar situations.	> 47%	8
 some selection, recall and use of facts, rules, definitions and procedures; basic comprehension and communication of mathematical concepts and techniques; 	> 40%	7
inconsistent evaluation of the reasonableness of solutions using mathematical reasoning; and inconsistent application of mathematical concepts and techniques.		6
 infrequent selection, recall and use of facts, rules, definitions and procedures; basic comprehension and communication of some mathematical concepts and 	> 27%	5
techniques; some description of the reasonableness of solutions; and infrequent application of mathematical concepts and techniques.		4
	> 13%	3

• isolated selection, recall and use of facts, rules, definitions and procedures; partial comprehension and communication of rudimentary mathematical concepts and techniques; superficial description of the reasonableness of solutions; and disjointed application of mathematical concepts and techniques.	> 7%	2
• isolated and inaccurate selection, recall and use of facts, rules, definitions and procedures; disjointed and unclear communication of mathematical concepts and techniques; and illogical description of the reasonableness of solutions.	> 0%	1
does not satisfy any of the descriptors above.		0

Task

See IA3 sample assessment instrument: Examination (15%) (available on the QCAA Portal).

Sample marking scheme

Criterion	Marks allocated	Provisional marks
Foundational knowledge and problem-solving Assessment objectives 1, 2, 3, 4, 5 and 6	15	_
Total	15	—

The annotations are written descriptions of the expected response for each question and are related to the assessment objectives.

Note: $\checkmark = \frac{1}{2}$ mark		
2	Paper 1 (technology-free)	1. comprehend information to identify relevant
	Question 1 (SF 4 marks)	concepts and techniques to determine the expected value
	$E(X) = \int_{20}^{70} xp(x) dx \checkmark$	select and use facts and procedures to:
	$=\int_{20}^{70} x \times 0.02 dx \checkmark$	 set up integral equation for a given probability density function
	$= [0.01x^2]_{20}^{70} \checkmark \checkmark$	 integrate a polynomial function
	$= 0.01 \times 70^2 - 0.01 \times 20^2 \checkmark$	 set up a definite integral
_	$E(x) = 49 - 4 = 45 \checkmark$	communicate using
2. recall and use definitions and procedures for	Question 2 (CU 6 marks)	mathematical symbols
determining: • a point of	Solve for $h''(x) = 0 \checkmark$	
inflectionthe derivative of a polynomial	Given $h(x) = x^5 + 5x^4 + \frac{10x^3}{3} - 50x^2 + 5x + 2$	
function comprehend the	$h'(x) = 5x^4 + 20x^3 + 10x^2 - 100x + 5\checkmark$	
purpose of given information (point of inflection at	$h''(x) = 20x^3 + 60x^2 + 20x - 100 \checkmark$	
x = 1) is to identify relevant technique to use (factor	$h''(x) = 0 = 20(x^3 + 3x^2 + x - 5)$	
theorem) recall and use procedures for factorising a cubic	$x = 1$ identified as a zero of the function $x^3 + 3x^2 + x - 5$ ∴ $(x - 1)$ is a factor $\checkmark \checkmark$	
polynomial recall and use procedures for:	Using the factor theorem: ✓	

	Using null factor theorem: \checkmark $2\cos(\theta) - 1 = 0 \checkmark \text{ and } \cos(\theta) + 1 = 0 \checkmark$ $\cos(\theta) = \frac{1}{2} \qquad \cos(\theta) = -1$ $\theta = \frac{\pi}{3}$	
recall exact values of $\sin \theta$ and $\cos \theta$	For the trapezium, $\theta = \frac{\pi}{3}$ is the only reasonable option $\checkmark \checkmark$ To determine if the area is a maximum: $A''(x) = -16\cos(\theta)\sin(\theta) - 4\sin(\theta)\checkmark$	
use the second derivative to state and show value is maximum communicate findings	$A''\left(\frac{\pi}{3}\right) = -16\cos\left(\frac{\pi}{3}\right)\sin\left(\frac{\pi}{3}\right) - 4\sin\left(\frac{\pi}{3}\right)$ $A''\left(\frac{\pi}{3}\right) = -16 \times \frac{1}{2} \times \frac{\sqrt{3}}{2} - 4 \times \frac{\sqrt{3}}{2} = -8\sqrt{3} < 0 \checkmark$ $\therefore \text{ the area of the trapezium is maximum when } \theta = \frac{\pi}{3} \cdot \checkmark$ $(Note: first derivative test may also be used)$	

	Paper 2 (technology-active)
4a. use cosine rule to set up equation to solve use technology to solve for angle near Tower 1 recall and use definition for bearings to state position relative to Tower 1	Question 4 (SF 7 marks) a. Using cosine rule (3 lengths of a triangle are given) \checkmark $0.8^2 = 1.5^2 + 2^2 - 2 \times 1.5 \times 2 \times \cos(A)$ (A is the angle at Tower 1) \checkmark $\cos(A) = \frac{0.8^2 - 1.5^2 - 2^2}{-2 \times 1.5 \times 2}$ $A = 20.77^\circ \checkmark \checkmark$
	Therefore, you are situated at a position 20.77° north of east from Tower 1 ✓✓

6. Question 6 (SF 4 marks) comprehend that sample proportion techniques are $n = 400 \checkmark mean = p = 0.45 \checkmark$ required use rule for standard deviation Standard deviation = $\sqrt{\frac{0.45(1-0.45)}{400}} = 0.024875 \checkmark \checkmark$ of a sample proportion use technology to determine : the probability that more than 50% of people have watched probability more than an hour of Facebook or YouTube videos in a communicate week: mathematical setup that was considered when $P(\hat{P} > 0.50) = 0.02 \checkmark \checkmark$ determining the solution (using normCdf (0.5, 1, 0.45, 0.024875)) ✓✓ **Question 7 (SF 4 marks)** 7. comprehend Binomial experiment ✓ context used to model binomial $n = 8 \checkmark$ random variable recall and use the p represents the probability the correct answer is chosen probabilities associated with the $p = \frac{1}{4} \checkmark$ binomial distribution with parameters n = 8q is the probability the incorrect answer is chosen $q = \frac{3}{4}$ and $p = \frac{1}{5}$ Determine the term in p^3 in the expansion $(p+q)^8 \checkmark$ use procedure to determine probability for 3 $P(3 \text{ correct answers}) = {8 \choose 3} p^3 q^5 \checkmark \checkmark$ successes communicate mathematical set- $= 56 \times \left(\frac{1}{4}\right)^3 \times \left(\frac{3}{4}\right)^5$ up that was considered when calculating the solution $= 0.21 \checkmark \checkmark$ or determine this value using binomPdf (8, 0.25, 3) on graphics calculator; the working must include the mathematical set-up that is considered when determining the value Question 8 (SF 6 marks) Mean distance = а 8a. use rule for $\int_0^{12} x \cdot f(x) dx = \int_0^{12} \frac{x}{1152} (144 - x^2) dx$ determining the mean of a continuous random $=\frac{1}{1152}\int_{0}^{12}144x-x^{3}dx \checkmark \checkmark$ variable communicate mathematical setup that was $=\frac{1}{1152}[72x^2-\frac{x^4}{4}]_0^{12}$ considered when calculating the solution $=\frac{1}{1152}\left(72\times12^2-\frac{12^4}{4}\right)$

$$= \frac{5184}{1152} = 4.5 \text{ m} \checkmark \checkmark$$
(or determine this value using Calculus – Numerical integral on graphics calculator)
b. Variance =

$$\int_{-\infty}^{\infty} (x - \mu)^2 f(x) dx \checkmark$$

$$= \int_{0}^{12} \frac{(x - 4.5)^2 (144 - x^2)}{1152 dx} \checkmark \checkmark$$

$$= 8.55$$
(using graphics calculator Calculus – Numerical Integral)
standard deviation = $\sqrt{8.55} = 2.924 \checkmark$
(using graphics calculator Calculus – Numerical Integral)
standard deviation = $\sqrt{8.55} = 2.924 \checkmark$
(using graphics calculator Calculus – Numerical Integral)

$$= \frac{17 \frac{1}{112} \frac{(144 - x^2)dx}{l^{1123} \frac{1}{114} - x^2)dx} \checkmark$$
(using graphics calculator Calculus – Numerical Integral)

$$= \frac{0.2337\%}{l^{1123} \frac{1}{114} - x^2 + 2dx} \checkmark$$
(using graphics calculator Calculus – Numerical Integral)

$$= \frac{0.337\%}{l^{1123} - 4} \checkmark$$
(using graphics calculator Calculus – Numerical Integral)

$$= \frac{0.337\%}{l^{1123} - 4} \checkmark$$
(using graphics calculator Calculus – Numerical Integral)

$$= \frac{0.337\%}{l^{1123} - 4} \checkmark$$
(using graphics calculator Calculus – Numerical Integral)

$$= \frac{0.43}{\sqrt{1125}} \checkmark$$
(using graphics calculator Calculus – Numerical Integral)

$$= \frac{0.125 \pm 1.65}{0.125 \times 0.875} \checkmark$$
(0.0752, 0.1748) \checkmark
Based on a sample size of 120 and a sample estimate of 0.125, I am fairly certain (90% certain) that the interval from 0.0752 to 0.1748 contains the true population proportion p. \checkmark

9b. b. $0.02 = 1.65 \sqrt{\frac{0.125 \times 0.875}{n}} \checkmark$ use rule for margin of errors use technology (or (using nsolve) ✓ otherwise) to determine sample size $n = 744.434 \checkmark$ communicate mathematical set- \therefore to achieve a margin of error of 2% a sample size up that was considered when of 744 is required. ✓ determining a solution Note: Answers may vary if z-score to more than 2 decimal evaluate reasonableness of places is used. solution Question 10 (CF 6 marks) 10. $P(X < 75) = 0.067; P(X > 100) = 0.1587 \checkmark \checkmark$ comprehend use of standardised normal variables $P(z < z_1) = 0.067; z_1 = -1.49851 \checkmark$ use technology appropriately to $P(z > z_2) = 0.1587; z_2 = 0.999815 \checkmark$ determine z-scores to compare samples $\frac{75-\mu}{\sigma} = -1.49851 \checkmark$ recall and use procedures to generate simultaneous Rearranging: equations $-1.49851\sigma + \mu = 75$ (*i*) \checkmark $\frac{100-\mu}{2} = 0.999815$ \checkmark use technology (or Rearranging: otherwise) to determine the $0.999815\sigma + \mu = 100$ (*ii*) \checkmark mean and standard deviation (using Solve system of linear equations on graphics communicate mathematical setcalculator) √√ up that was considered when $\sigma = 10 \checkmark$ determining the solution to nearest $\mu = 90 \checkmark$ whole number (Note: Some students may use analytic approach to solve for the mean and standard deviation.)

11. recall that the	Question 11 (CU 7 marks)	
mean of the sampling distribution is the	$n = 20 \checkmark$	
same as the value of the population	$Mean = p = 0.8 \checkmark$	
proportion use rule for standard deviation of a sample proportion	Standard deviation = $\sqrt{\frac{0.8 \times (1-0.8)}{20}} = 0.08944 \checkmark \checkmark$	
use procedure to determine one	One standard deviation above and below:	
standard deviation above and below the mean	$0.8 - 0.08944 = 0.71056 \checkmark$ and	
comprehend sampling	$0.8 + 0.08944 = 0.88944 \checkmark$	
distribution is for a small sample size mathematical	$P(0.71056 \le \hat{P} \le 0.88944) = P(14.2 \le X \le 17.788) \checkmark \checkmark$	
reasoning provided for determining the number of	$= P(15 \le X \le 17)$ since X is discrete $\checkmark \checkmark$	
'successes' to determine the probabilities	$= \binom{20}{15} 0.8^{15} \times 0.2^5 + \binom{20}{16} 0.8^{16} \times 0.2^4 + \binom{20}{17} 0.8^{17} \times 0.2^3$	
associated with the binomial distribution	or √√	
communicate mathematical set- up that was	(using binomCdf (20, 0.8, 15, 17) on graphics calculator)	
considered when determining the	$= 0.598 \checkmark \checkmark$	
solution (using probabilities associated with the		
binomial distribution or		
technology)		

© (i) © State of Queensland (QCAA) 2023

Licence: https://creativecommons.org/licenses/by/4.0 | Copyright notice: www.qcaa.qld.edu.au/copyright — lists the full terms and conditions, which specify certain exceptions to the licence. | Attribution (include the link): © State of Queensland (QCAA) 2023 www.qcaa.qld.edu.au/copyright.