Mathematical Methods 2019 v1.2

Unit 1 sample marking scheme

March 2019

Examination

This sample has been compiled by the QCAA to model one possible approach to allocating marks in an examination. It matches the examination mark allocations as specified in the syllabus ($\sim 60 \%$ simple familiar, $\sim 20 \%$ complex familiar and $\sim 20 \%$ complex unfamiliar) and ensures that all the objectives are assessed.

Assessment objectives

This assessment instrument is used to determine student achievement in the following objectives:

1. select, recall and use facts, rules, definitions and procedures drawn from all Unit 1 topics
2. comprehend mathematical concepts and techniques drawn from all Unit 1 topics
3. communicate using mathematical, statistical and everyday language and conventions
4. evaluate the reasonableness of solutions
5. justify procedures and decisions by explaining mathematical reasoning
6. solve problems by applying mathematical concepts and techniques drawn from all Unit 1 topics.

Task

See the sample assessment instrument for Unit 1 Topics 1-5: Examination (available on the QCAA Portal).

Sample marking scheme

The annotations are written descriptions of the expected response for each question and are related to the assessment objectives.

Note: $\checkmark=\frac{1}{2}$ mark

1 a.
comprehend (equate quadratic to zero)
select appropriate procedure
(factorisation/ quadratic formula)
use appropriate procedure to determine intercepts
communicate using mathematical terminology and symbols
$1 b$.
select appropriate procedure
use appropriate procedure to determine intercepts

Marking scheme

Paper 1 (technology-free)

Question 1 (3 marks) SF

a. x-intercept/s $(y=0)$
$0=2 x^{2}-4 x-6 \checkmark$
Using factorisation \checkmark
$0=2\left(x^{2}-2 x-3\right)$
$0=2(x-3)(x+1)$
$x=3,-1 \checkmark$
x-intercepts at $(3,0)$ and $(-1,0)$
b. $y-$ intercept $(x=0)$
$y=2 \times 0^{2}-4 \times 0-6 \checkmark$
y - intercept $(0,-6) \checkmark$

Question 2 (5 marks) SF

a. Centre $(-2,1) \checkmark$

Radius $1 \checkmark$
Equation of circle
$(x+2)^{2}+(y-1)^{2}=1 \checkmark \checkmark$
b. Domain $-3 \leq x \leq-1 \checkmark \checkmark$

Range $0 \leq y \leq 2 \checkmark \checkmark$
c. The circle shown is not a function.

For some x - values there is more than one corresponding y - value. \checkmark

2a.
select, recall and
use

- rules for locus of a circle
- equation of a circle

2b.
select, recall and use the definition for domain and range

2c.
select, recall and use the definition for function/relation
communicate using mathematical and everyday language
3.
select and use the appropriate procedure to produce a sketch of parabola and two straight lines
communicate the sketch appropriately, attending to precision (graphical display, use of solid dot to 'include' and open dot to 'not include')

4a.

select and use rule for common ratio in a geometric progression
4b.
select and use rule for common ratio in a geometric progression
comprehend how to generate an equation
select and use rules for rearranging an equation
clearly communicate how the equation was generated

Question 3 (4 marks) SF

Question 4 (11 marks) SF

a. $r=\frac{6}{b-1}$ or $\frac{b+4}{6} \checkmark \checkmark$
b. $\frac{6}{b-1}=\frac{b+4}{6} \checkmark \checkmark$
$36=(b+4)(b-1) \checkmark \checkmark$
$b^{2}+3 b-40=0$ (given in question)
$\checkmark \checkmark$
c. Solving quadratic (using quadratic formula)
$b=\frac{-3 \pm \sqrt{3^{2}-4 \times 1 \times-40}}{2} \checkmark$

$$
b=-8,5 \checkmark \checkmark
$$

d. Substitute b into $r=\frac{6}{b-1} . \checkmark \checkmark$

When $b=-8, r=\frac{6}{-9}=\frac{-2}{3}$ and
When $b=5, r=\frac{6}{4}=\frac{3}{2} \checkmark \checkmark$
e. $r=\frac{-2}{3}$ will result in a finite sum as

$$
|r|<1 \checkmark \checkmark
$$

$$
\begin{aligned}
S_{\infty} & =\frac{a}{1-r}=\frac{-8-1}{\left(1-\frac{-2}{3}\right)} \checkmark \checkmark \\
& =\frac{-9}{\frac{5}{3}}=\frac{-27}{5}=-5.4 \checkmark \checkmark
\end{aligned}
$$

Question 5 (4 marks) SF

Using Pascal's triangle the coefficient of the term is $10 \checkmark \checkmark$
($2 a$) is to the power of $2 \checkmark \checkmark$
$\therefore b$ is to the power of $3 \checkmark$
fourth term $=10 \times(2 a)^{2} \times b^{3} \checkmark \checkmark$
fourth term $=40 a^{2} b^{3} \checkmark$
(or expansion may be used and fourth term identified)

4c.
select and use the appropriate procedure
determine the zeros of the equation

4d.
use substitution to determine r

4 e .
justify the decision
select and use the rule for S_{∞} to determine the finite sum
5.
recall and use
Pascal's triangle to
determine
coefficient
recall binomial expansion rule to determine power for a and b
use index laws communicate term
a.
select and use rule for mutually exclusive events
use substitution procedure and algebraic skills to determine $P(B)$

7a.
recall and use rules for expansion

7b.
recall and use rules for determining x-intercepts given function in factorised form recall and use rule for determining y-intercept given expanded version of a function

Question 6 (2, 4 marks) SF, CF

a.

$$
\begin{aligned}
P(A)+P(B) & =P(A \cup B) \checkmark \checkmark \\
P(B) & =0.6-0.3 \checkmark \\
& =0.3 \checkmark \\
P(A \cup B) & =P(A)+P(B)-P(A \cap B) \checkmark \checkmark
\end{aligned}
$$

b. Given that A and B are independent:

$$
\begin{aligned}
P(A \cup B) & =P(A)+P(B)-P(A) \times P(B) \checkmark \checkmark \\
0.6 & =0.3+P(B)-0.3 P(B) \checkmark \\
0.3 & =0.7 P(B) \checkmark \\
P(B) & =\frac{3}{7} \checkmark \checkmark
\end{aligned}
$$

Question 7 (4 marks) SF

$$
\text { a. } \begin{aligned}
&(x+4)(2 x-3)(x+6) \\
& \quad=\left(2 x^{2}+5 x-12\right)(x+6) \\
&= 2 x^{3}+17 x^{2}+18 x-72 \\
&
\end{aligned}
$$

b. $x-$ intercepts $(-4,0)\left(\frac{3}{2}, 0\right)(-6,0) \checkmark \checkmark \checkmark$

$$
y-\text { intercept }(0,-72) \checkmark
$$

Question 8 (7 marks) CF

Using substitution
$x=(x-2)^{2} \checkmark$
$x=x^{2}-4 x+4 \checkmark$
$0=x^{2}-5 x+4 \checkmark$

Factorising

$0=(x-4)(x-1) \checkmark$
$x=4,1 \checkmark$
Substituting into $y=x-2$
$y=2,-1 \checkmark$

Points of intersection $(4,2) \checkmark(1,-1) \checkmark$
The points of intersection between the parabola and the straight line correspond with the simultaneous solution.

6b.
recall and use rule for a combined event
select and use rule for independent events
use substitution procedure
use procedure for adding like terms
use algebraic skills to determine $P(B)$
8.
comprehend solution to two equations to two unknowns is required
recall and use:

- procedure for solving simultaneously
- rules for expanding and rearranging
comprehend solution to a quadratic is required
recall and use rules for solving a quadratic equation to determine solutions
recall shapes of graphs and sketch
comprehend points of intersection indicate simultaneous solution
evaluate the reasonableness of results

Question 9 (5 marks) CU

LHS of equation:
$(x-2)^{3}+1$
Function $y=x^{3}+3$ has been transformed 2 units to the right and 2 units down vertically $\checkmark \checkmark$
RHS of equation:
$2(x-2)^{4}$
$y=2(x-2)^{4}$ has not been transformed.
No change to sketch of quartic function.

The points of intersection represent the solution to the given equation.
Solutions are approximately $x=1.3$ and $x=3$ (accept approximations that are reasonable).

Question 10 (5 marks) CU

Expanding RHS

$p(x)=x^{3}-3 x^{2}+20 \checkmark \checkmark$
Using trial and error:
$x=-2$ is a root of the function $\therefore(x+2)$ is a factor $\checkmark \checkmark$
$p(x)=(x+2)\left(x^{2}-5 x+10\right) \checkmark \checkmark$
$x^{2}-5 x+10$ has no real roots $\left(b^{2}-4 a c<0\right) \checkmark \checkmark$
\therefore the only root for this function is $x=-2$ and therefore the functions cuts the x-axis at only one point. $\checkmark \checkmark$
9.
justify procedures and decisions by:

- communicating techniques that must be used to develop a solution (transformation of curves)
- recalling shape of curves (identify cubic and/or quartic).

use rules for

 transforming curve to produce a graphical displayrecall procedure for visually solving for a solution to an equation (point of intersection)
use procedure to determine the solution to the given equation
10.
justify procedures and decisions by identifying cubic form of the function to then use factor theorem
select, recall and use:

- factor theorem
- the role of the discriminant communicate findings

Paper 2 (technology-active)

Question 1 (7 marks) SF

a. $P(F)=\frac{7}{30} \quad \checkmark \checkmark\left(\operatorname{accept} \frac{35}{150}\right)$
b. $P($ Year 11 French student $)=\frac{15}{150}=\frac{1}{10} \checkmark \checkmark$
c. If the events are independent then

$$
\begin{aligned}
& P(F \cap Y)=P(F) \times P(Y) \checkmark \checkmark \\
& L H S=P(F \cap Y)=\frac{1}{10} \checkmark \checkmark \text { (from b. above) } \\
& R H S=P(F) \times P(Y)=\frac{35}{150} \times \frac{70}{150} \approx 0.109 \checkmark \checkmark \\
& L H S \neq R H S \quad \therefore F \text { and } Y \text { are not independent } \checkmark \checkmark
\end{aligned}
$$

Question 2 (3 marks) SF

Determine $P($ Student takes Geography \mid Student takes MM) \checkmark
$=\frac{P(G e o g \cap M M)}{P(M M)} \checkmark \checkmark$
$=\frac{0.095}{0.64} \checkmark \checkmark$
$=0.1484 \checkmark$

3a.
select, recall and use rule

3b.
select, recall and use rule

3c.
understand critical element (to set up the inequality and solve for n
use GDC to
determine n (graphically, using algebraic function, trial and error)
comprehend
findings to determine n
communicate findings logically

Question 3 (7 marks) SF

a. $r=\frac{2.24}{0.56}=4 \checkmark \checkmark$
b. $t_{10}=0.56 \times 4^{(10-1)}$
$=146800.64 \checkmark \checkmark$
C. solve $0.56 \times \frac{4^{n}-1}{(4-1)}>195000 \checkmark \checkmark$

$$
\begin{aligned}
& \text { solve }\left(0.56 \cdot \frac{4^{n}-1}{4-1}=195000, n\right) \quad n=9.99729 \\
& \text { When } n=9.99, S_{n}=195000 \\
& \therefore \text { the least value of } n \text { is } 10 \checkmark \checkmark \\
& \checkmark \checkmark
\end{aligned}
$$

Question 4 (3 marks) SF

Using the annuity formula $\checkmark \checkmark$
$=\$ 1000 \times \frac{\left(1.05^{5}-1\right)}{0.05} \checkmark \checkmark$
$=\$ 1000 \times 5.52563$
$=\$ 5525.63 \checkmark \checkmark$
$1 a$.
select and use rule
1 b.
select and use rule
1c.
select and use rule
justify decision
communicate information logically

2.

understand relevant technique to use
communicate appropriately (everyday language or notation)
substitute into formula to determine solution
4.
select and use rule
determine value of investment (may use technology function on GDC)
6.
select, recall and use rules:

- vertical stretch
- reflection in x-axis
- vertical and horizontal translation
justify decisions by explaining mathematical reasoning
use procedure to determine p
communicate equation

7.

recall and use rule for asymptote
use given point to generate an equation
recall and use rules to determine p
identify horizontal asymptote

Question 5 (7 marks) SF

$$
\begin{aligned}
& \text { a. } t_{3}=11=t_{1}+2 d(i) \checkmark \checkmark \\
& \quad t_{5}=19=t_{1}+4 d(i i) \checkmark \checkmark \\
& \quad(i i)-(i) \\
& 8=2 d \\
& d=4 \checkmark \checkmark
\end{aligned}
$$

b. Substitute $d=4$ into (i)

$$
t_{1}=3 \checkmark \checkmark
$$

c. $S_{20}=\frac{20}{2}(2 \times 3+19 \times 4) \checkmark \checkmark$
$S_{20}=820 \checkmark \checkmark$

Question 6 (5 marks) CF

Equation of curve is:
$y=-4(x+1)^{4}+p$
Given $(0,2)$ lies on the curve
Substitute point $(0,2) \checkmark$
$2=-4(0+1)^{4}+p^{\checkmark}$
$p=6 \checkmark$
\therefore equation of curve is $y=-4(x+1)^{4}+6 \checkmark$

Question 7 (4 marks) CF

Given $x=-2$ is a vertical asymptote
Vertical asymptote $x+a=0 \rightarrow x=-a$ so $a=2$
$f(x)=p+\frac{5}{x+2} \checkmark \checkmark$
Given y - intercept at $(0,5)$
$5=p+\frac{5}{0+2} \checkmark \checkmark$
$p=\frac{5}{2} \checkmark \checkmark$
Horizontal asymptote at $y=\frac{5}{2}$ (students may use technology to determine this) $\checkmark \checkmark$

5 a.
comprehend information to generate equations
select and use rule/procedures (may use technology to solve simultaneously)
5b.
use substitution procedure
5 c .
select and use rule to determine S_{20}
communicate clearly (including correct use of notation)
8.
comprehend information given in template to generate volume function
use rule for volume of a rectangular prism
justify procedures and decisions:

- decide on method of solution
- communicate graph

recall

facts/definitions to
identify intervals, maximum, domain
justify procedures and decisions
9.
select and use the rule for binomial expansion
recall and use index laws
explain mathematical reasoning (x^{0} is the term independent of x)
recall and use index laws
use algebraic skills
comprehend how to use the solution and substitute to create equation
recall procedure to solve for unknown (may use GDC)

Question 8 (7 marks) CU

Using the given information the volume of the cake dish is:
$V(x)=(40-2 x)(30-2 x) x$, where x is the height of the tin.
$\checkmark \checkmark$
Use technology to visualise relationship (graphing) or produce table of values $\checkmark \checkmark$

a. The function is increasing up to $x=5.66$ and decreasing to $x=15 \checkmark \checkmark$
b. Maximum volume of $3030 \mathrm{~cm}^{3}$ when $x=5.66 \mathrm{~cm} \checkmark \checkmark$
c. Domain $0<x<15 \checkmark \checkmark$
x values outside this interval produce negative dimension.
$\checkmark \checkmark$

Question 9 (5 marks) CU

General term is:
$\binom{8}{r}\left(\frac{x^{3}}{2}\right)^{8-r}\left(\frac{a}{x}\right)^{r} \quad$ (1) \checkmark
$=\binom{8}{r} \frac{x^{24-3 r}}{2^{8-r}} \times \frac{a^{r}}{x^{r}} \checkmark \checkmark$
constant is the term independent of x (index is zero) $\checkmark \checkmark$
term in $x \rightarrow \frac{x^{24-3 r}}{x^{r}}=x^{24-4 r} \checkmark$
$\therefore 24-4 r=0$
$r=6 \checkmark \quad$ substitute into (1)
$\binom{8}{6}\left(\frac{x^{3}}{2}\right)^{8-6}\left(\frac{a}{x}\right)^{6} \rightarrow \frac{28 a^{6}}{4}=5103 \checkmark$
$a^{6}=729$
$a= \pm 3 \checkmark \checkmark$

