Mathematical Methods 2019 v1.2

Units 1 and 2 sample marking scheme

September 2018

Examination - short response

This sample has been compiled by the QCAA to model one possible approach to allocating marks in an examination. It matches the examination mark allocations as specified in the syllabus ($\sim 60 \%$ simple familiar, $\sim 20 \%$ complex familiar and $\sim 20 \%$ complex unfamiliar) and ensures that all the objectives are assessed.

Assessment objectives

This assessment instrument is used to determine student achievement in the following objectives:

1. select, recall and use facts, rules, definitions and procedures drawn from Units 1 and 2
2. comprehend mathematical concepts and techniques drawn from Units 1 and 2
3. communicate using mathematical, statistical and everyday language and conventions
4. evaluate the reasonableness of solutions
5. justify procedures and decisions by explaining mathematical reasoning
6. solve problems by applying mathematical concepts and techniques drawn from Units 1 and 2.

Task

See the sample assessment instrument for Units 1 and 2: Examination - short response (available on the QCAA Portal).

Sample marking scheme

Criterion	Marks allocated	Result
Foundational knowledge and problem-solving	-	-
Assessment objectives 1, 2, 3, 4,5 and 6		

The annotations are written descriptions of the expected response for each question and are related to the assessment objectives.

Note: $\checkmark=\frac{1}{2}$ mark
information graphically (label axes accurately)

2.

select and use facts and procedures to determine value for each term on LHS
use rule to generate an equation in x
use index rules to determine x

Marking scheme

Paper 1 (technology-free)

Question 1 (4 marks) SF

a. \quad Amplitude $=3 \checkmark$
b. Period $=\frac{2 \pi}{2}=\pi \checkmark \checkmark$
c.

Question 2 (4 marks) SF

Changing each term to index form:
$\log _{3} 27=x \rightarrow 27=3^{x} \therefore x=3 \checkmark$
$\log _{8} \frac{1}{8}=x \rightarrow \frac{1}{8}=8^{x} \therefore x=-1 \checkmark \checkmark$
$\log _{16} 4=x \rightarrow 4=16^{x}=4^{2 x} \rightarrow 1=2 x \therefore x=\frac{1}{2} \downarrow \checkmark$
LHS $=3-1-\frac{1}{2}=\frac{3}{2}$
$\frac{3}{2}=\log _{4} x \checkmark$
$x=4^{\frac{3}{2}}=\left(2^{2}\right)^{\frac{3}{2} \checkmark}$
$x=2^{3}=8 \checkmark$

3a.
recall and use rule for differentiating polynomial and power functions recall derivative of a constant is zero
3b. recognise composite function
use chain rule substitute the derivatives

3c.
select and use product rule
select and use chain rule
recall and use rules for differentiating polynomial and power functions

3d.
select and use quotient rule
recall and use rules for differentiating polynomial functions

5 a.

select and use rule perform calculation 5b.
select rule
put result into effect
perform calculation

Question 3 (11 marks) SF

$\checkmark \checkmark \checkmark \checkmark \checkmark$
a. $8 x^{3}-6 x-\frac{5}{x^{2}}$
b. Use the chain rule

$$
\begin{aligned}
& \text { Let } u=\left(x^{3}+x\right) \checkmark \checkmark \\
& \qquad \begin{aligned}
\frac{d y}{d x} & =5(u)^{4} \times u^{\prime} \checkmark \checkmark \\
\frac{d y}{d x} & =5\left(x^{3}+x\right)^{4} \times\left(3 x^{2}+1\right) \checkmark \checkmark
\end{aligned}
\end{aligned}
$$

c. Use the chain rule within product rule

$$
\begin{aligned}
& \checkmark \\
& \frac{d y}{d x}=\left(2 x^{2}+3\right) \frac{1}{2 \sqrt{x-1}}+\sqrt{x-1}(4 x)
\end{aligned}
$$

d. Use quotient rule

$$
\frac{\left(x^{3}-3\right) \times-1-\left((1-x) 3 x^{2}\right)}{\left(x^{3}-3\right)^{2}}
$$

Question 4 (4 marks) CF

$f^{\prime}(x)=3 a x^{2}-12 x \checkmark \checkmark$
At point $P(x=1)$ the gradient is $3 \therefore$
$3=3 a \times 1^{2}-12 \times 1$
$a=5 \checkmark \checkmark$

Question 5 (5 marks) SF

a.

$$
\begin{aligned}
0.3+a+2 a+0.1 & =1 \checkmark \checkmark \\
a & =0.2 \checkmark \checkmark
\end{aligned}
$$

b.

$$
\begin{aligned}
& E(X)=0.3 \times 0+2 \times 0.2+5 \times 2 \times 0.2+9 \times 0.1 \checkmark \checkmark \\
& E(X)=3.3 \checkmark \checkmark
\end{aligned}
$$

4.

translate information to generate derivative
comprehend and use information to create an equation in a
determine solution for a

6 a.
recall and use procedure for rearranging an equation
recall exact value for $\sin (x)$ and integer multiples of $\frac{\pi}{6}$

6b.
recall and use procedure for solving a quadratic equation
(factorising or quadratic formula)
recall and use procedure for rearranging an equation
recall exact value for $\cos (x)$ and integer multiples of $\frac{\pi}{6}$
communicate solutions appropriately using given domain (radians)

Question 6 (8 marks) SF

a. $\quad 2 \sin (x)=1 \checkmark$

$$
\begin{aligned}
& \sin (x)=\frac{1}{2} \checkmark \\
& \checkmark \checkmark \checkmark \\
& x=\frac{\pi}{6}, \\
& \frac{5 \pi}{6}
\end{aligned}
$$

b. $\quad 2 \cos ^{2}(x)-\cos (x)=0$

$$
\begin{aligned}
\cos (x)(2 \cos (x)-1) & =0 \checkmark \\
\therefore 2 \cos (x)-1 & =0 \checkmark \\
\cos (x) & =\frac{1}{2} \checkmark \\
& \checkmark \quad \checkmark \checkmark \\
x & =\frac{\pi}{3}, \quad \frac{5 \pi}{3}
\end{aligned}
$$

or

$$
\cos (x)=0 \checkmark
$$

$$
\begin{array}{cc}
\checkmark & \checkmark \\
x=\frac{\pi}{2}, & \frac{3 \pi}{2}
\end{array}
$$

Question 7 (6 marks) SF

Solve for parameters in function:
$y=A \sin (B(x+C))+D($ or cosine function $) \checkmark$
Amplitude $(A)=\frac{8}{2}=4$
Period $=\frac{2 \pi}{B}=\pi \therefore B=\frac{2 \pi}{\pi}=2 \checkmark \checkmark$
$C=0$ (curve has not been translated horizontally for sine function)
(Note: for cosine function $C=-\frac{\pi}{4}$) $\checkmark \checkmark$
$D=-3$ (curve has been translated vertically downwards 3 units) $\checkmark \checkmark$
$y=4 \sin (2 x)-3$
(Note: cosine function model is $y=4 \cos \left(2\left(x-\frac{\pi}{4}\right)\right)-3$ or equivalent.)
7.
comprehend periodic model is appropriate
recall procedures and put into effect to determine parameter values
justify all procedures and decisions
communicate equation of graph

8 a.
recall use of tree diagram to organise and visualise the different possible outcomes of dependent events

8b.
recall and use procedure for multiplying along the branches

8 c .
recognise and use conditional probability rule recall and use procedure for

- multiplying along the branches
- adding the probabilities
- determining the probability

Question 8 (7 marks) SF

a. First branch $P($ Alice wins $)=\frac{2}{9} \checkmark$

Second branch (top) P (Alice wins) $=\frac{2}{7} \checkmark$
Second branch (bottom) P (Alice wins) $=\frac{1}{3} \checkmark$
b. $\quad P$ (Raoul wins the first and Alice wins the second)
$=\frac{7}{9} \times \frac{2}{7} \downarrow$
$=\frac{2}{9} \checkmark$
C. $\quad P$ (Raoul wins both games/he wins at least one game) \checkmark
$=\frac{P(\text { Raoul wins both games } \cap \text { Raoul wins at least one game })}{P(\text { Raoul wins at least one game })}$

$$
=\frac{\frac{7}{9} \times \frac{5}{7}}{\left(\frac{7}{9} \times \frac{5}{7}\right)+\left(\frac{7}{9} \times \frac{2}{7}\right)+\left(\frac{2}{9} \times \frac{2}{3}\right)}
$$

$$
\checkmark \checkmark \quad \checkmark \quad \checkmark \checkmark
$$

$=\frac{15}{25}=\frac{3}{5} \checkmark$

Question 9 (6 marks) CU

Stationary point $y^{\prime}=0 \checkmark$
$y^{\prime}=4 x^{3}+16 x-20=4\left(x^{3}+4 x-5\right)$
Using trial and error, $(x-1)$ is a factor of $y^{\prime} \checkmark$
Use factor theorem:
$x^{3}+4 x-5=(x-1)\left(x^{2}+x+5\right) \checkmark \checkmark$
The discriminant of $\left(x^{2}+x+5\right)$ is negative therefore no real roots.

So $(x-1)$ is the only factor and $x=1$ the only stationary point.
To determine the nature of the point $x=1$
$y^{\prime}(0)=-20 \checkmark$
$y^{\prime}(2)=44 \checkmark$
Slope is negative to the left and positive to the right
\therefore stationary point at $x=1$ is a minimum. $\checkmark \checkmark$
9.
recall use of derivative to determine stationary point
comprehend

- use of given information to determine factor of derivative
- use factor theorem to factorise derivative
- use of discriminant
use first derivative rule to determine the nature of the stationary point
justify all procedures and decisions

3.

select appropriate method of solution use technology appropriately

Question 3 (4 marks) SF
Technological solution (see analytical solution below)
Nspire $\checkmark \checkmark$

41.1 >		*Doc
- ${ }^{\text {A }}$ earnings ${ }^{B}$ perce...		
=		
1	-40000	0.1
2	0	0.35
3	40000	0.45
4	200000	0.1

spreadsheet $\checkmark \checkmark$

one variable statistics $\checkmark \checkmark$

	$=$ OneVar
\bar{x}	34000.
$\sum x$	34000.
Σx^{2}	4.88 E 9
$s x:=s_{n-\ldots} \ldots$	\#UNDEF..
$\sigma x:=\sigma_{n . . .}$	61024.6

mean and standard deviation $\checkmark \checkmark$
Analytical solution
use given formula
$X=$ possible profit in thousands

x	$P(x)$	$x P(x) \checkmark \checkmark$	$P(x) \times(x-$ $\mu)^{2} \checkmark \checkmark$
-40	0.1	-4	547.6
0	0.35	0	404.6
40	0.45	18	16.2
200	0.1	20	2755.6
		$\sum x P(x)=34$	$\sum P(x) \times(x-\mu)^{2}$ $=3724$

6.

comprehend use of derivative is required
use rules to determine derivative
translate stationary
value to
mathematical equations
recall and use method to determine a simultaneous solution
recognise quadratic form of equation and solve for unknown

> describe and communicate method used for solution clearly
evaluate the reasonableness of the solution

Question 6 (9 marks) CF

Expand (or use product rule) and differentiate
$f(x)=x^{3}+p x^{2}+q x+p q \checkmark$
$f^{\prime}(x)=3 x^{2}+2 p x+q \checkmark$
Given stationary value at point $(1,-2)$
Substitute into $f(x)$

$$
-2=1+p+q+p q(i) \checkmark
$$

$f^{\prime}(1)=0 \checkmark$

$$
0=3+2 p+q(i i) \checkmark
$$

Rearrange (ii)

$q=-2 p-3$
Substitute into (i) \checkmark
$-2=1+p-2 p-3+p(-2 p-3) \checkmark$
$-2=-2 p^{2}-4 p-2$
$0=-2 p^{2}-4 p \checkmark$
Solve quadratic equation (using factorisation or otherwise)

$$
0=-2 p(p+2) \checkmark \checkmark
$$

$$
p=0,-2 \checkmark \checkmark
$$

$\therefore q=-3,1 \checkmark \checkmark$
So $f(x)=x^{3}-3 x$
or $f(x)=x^{3}-2 x^{2}+x-2$

Each function is graphed and stationary point at $(1,-2)$ identified $\checkmark \checkmark$
7.
determine the periodic model (using technology or otherwise)
translate
information into a mathematically workable format and identify the mathematical procedure required

- points of intersection between periodic model and line $y=8$
- time difference between points of intersection
- use of probability rule
- explain all mathematical reasoning

Question 7 (7 marks) CU

Using technology to determine a periodic regression model $\checkmark \checkmark$
containing the points: $\checkmark \checkmark$
$(0,10)$
$(24,10)$
$(6,14)$
$(18,6)$
or use analytical skills to determine a model
$y=4 \sin \left(\frac{\pi}{12} t\right)+10 \checkmark \checkmark$
(Note: points $(6,6)$ and $(18,14)$ may be used to generate the model.)
$y=-4 \sin \left(\frac{\pi}{12} t\right)+10$
Determine points of intersection with line $y=8$


```
\thereforeP}\leq8=\frac{8}{24}
P(Temperature }\leq\mp@subsup{8}{}{\circ}\textrm{C})\approx33.3%\mathrm{ (or 0.333)
```

