Mathematical Methods 2019 v1.2

IA2 sample marking scheme

March 2024

Examination (15%)

This sample has been compiled by the QCAA to model one possible approach to allocating marks in an examination. It matches the examination mark allocations as specified in the syllabus ($\sim 60\%$ simple familiar, $\sim 20\%$ complex familiar and $\sim 20\%$ complex unfamiliar) and ensures that a balance of the objectives are assessed.

Assessment objectives

This assessment instrument is used to determine student achievement in the following objectives:

- 1. select, recall and use facts, rules, definitions and procedures drawn from all Unit 3 topics
- 2. comprehend mathematical concepts and techniques drawn from all Unit 3 topics
- 3. communicate using mathematical, statistical and everyday language and conventions
- 4. evaluate the reasonableness of solutions
- 5. justify procedures and decisions by explaining mathematical reasoning
- 6. solve problems by applying mathematical concepts and techniques drawn from all Unit 3 topics.

Instrument-specific marking guide (ISMG)

Criterion: Foundational knowledge and problem-solving

Assessment objectives

- 1. select, recall and use facts, rules, definitions and procedures drawn from all Unit 3 topics
- 2. comprehend mathematical concepts and techniques drawn from all Unit 3 topics
- 3. communicate using mathematical, statistical and everyday language and conventions
- 4. evaluate the reasonableness of solutions
- 5. justify procedures and decisions by explaining mathematical reasoning
- 6. solve problems by applying mathematical concepts and techniques drawn from all Unit 3 topics

The student work has the following characteristics:		Marks
 consistently correct selection, recall and use of facts, rules, definitions and procedures; authoritative and accurate command of mathematical concepts and techniques; astute evaluation of the reasonableness of solutions and use of 	> 93%	15
mathematical reasoning to correctly justify procedures and decisions; and fluent application of mathematical concepts and techniques to solve problems in a comprehensive range of simple familiar, complex familiar and complex unfamiliar situations.		14
• correct selection, recall and use of facts, rules, definitions and procedures; comprehension and clear communication of mathematical concepts and techniques; considered evaluation of the reasonableness of solutions and use of mathematical reasoning to justify procedures and decisions; and proficient application of mathematical concepts and techniques to solve problems in simple familiar, complex familiar and complex unfamiliar situations.	> 80%	13
	> 73%	12
 thorough selection, recall and use of facts, rules, definitions and procedures; comprehension and communication of mathematical concepts and techniques; 	> 67%	11
to justify procedures and decisions; and application of mathematical reasoning techniques to solve problems in simple familiar and complex familiar situations.	> 60%	10
 selection, recall and use of facts, rules, definitions and procedures; comprehension and communication of mathematical concepts and techniques; 	> 53%	9
reasoning; and application of mathematical concepts and techniques to solve problems in simple familiar situations.	> 47%	8
• some selection, recall and use of facts, rules, definitions and procedures; basic comprehension and communication of mathematical concepts and techniques; inconsistent evaluation of the reasonableness of solutions using mathematical reasoning; and inconsistent application of mathematical concepts and techniques.	> 40%	7
	> 33%	6
• infrequent selection, recall and use of facts, rules, definitions and procedures; basic comprehension and communication of some mathematical concepts and	> 27%	5
techniques; some description of the reasonableness of solutions; and infrequent application of mathematical concepts and techniques.	> 20%	4
• isolated selection, recall and use of facts, rules, definitions and procedures; partial comprehension and communication of rudimentary mathematical concepts and	> 13%	3
		2

	techniques; superficial description of the reasonableness of solutions; and disjointed application of mathematical concepts and techniques.		
•	isolated and inaccurate selection, recall and use of facts, rules, definitions and procedures; disjointed and unclear communication of mathematical concepts and techniques; and illogical description of the reasonableness of solutions.	> 0%	1
•	does not satisfy any of the descriptors above.		0

Task

See IA2 sample assessment instrument: Examination (15%) (available on the QCAA Portal).

Sample marking scheme

Criterion	Marks allocated	Provisional marks
Foundational knowledge and problem-solving Assessment objectives 1, 2, 3, 4, 5, 6	15	_
Total	15	—

The annotations are written descriptions of the expected response for each question and are related to the assessment objectives.

Note: $\checkmark = \frac{1}{2}$ mark	Marking scheme —	
	Marking Scheme —	
1a. select and use:	Paper 1 (technology-free)	
 logarithm of a power rule 	Question 1 (SF 7 marks)	
 logarithm of a division rule OR logarithm of 1 rule logarithm of a product rule facts to solve 	a. $x = 2\log_{6}(3) + \log_{6}(4) - \log_{6}(1)$ $x = \log_{6}(9) + \log_{6}(4) - 0$ $\checkmark \checkmark$ $x = \log_{6}(36) \checkmark \checkmark$ $x = 2 \checkmark \checkmark$ b. $(e^{x} - 2)(e^{x} - 3) = 0$	1b. comprehend the information is in factorised form
	Use null factor theorem: $\checkmark \checkmark$ $e^x = 2$ and $e^x = 3 \checkmark \checkmark$ $x = \ln 2$ and $x = \ln 3 \checkmark \checkmark$	 null factor procedure rules to change from index form to log form to c solutions
 2a. select and use: derivative of e^x 	Question 2 (SF 13 marks)	for x
 procedure for chain rule (recognise inner and outer function) 	a. $f(x) = e^x + \sin(2x)$	
 derivative of a 	$f'(x) = e^x + 2\cos(2x)$	
trigonometric function	$\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{$	2b.select and use:procedure for chain
	b. $f(x) = e^{\sin(x)}$	rule to differentiate
	$f'(x) = e^{\sin(x)} \times \cos(x)$	an exponential function and
		trigonometric function (recognise inner and outer
2c. select and use:	c. $f(x) = \cos^3(x)$	function)
 procedure for chain 	$f'(x) = 3(\cos(x))^2 \times -\sin(x)$	
rule to differentiate a polynomial and a trigonometric function	or $-3\cos^2(x)\sin(x)$	

	d. $f(x) = x + x \ln(x)$ $f'(x) = 1 + x \times \frac{1}{x} + \ln(x) \times 1$ $\swarrow \checkmark \checkmark \checkmark$ $f'(x) = 2 + \ln(x) \checkmark \checkmark$	 2d. select and use: rule for derivative of a polynomial rule for differentiating a product rule for derivative of natural logarithm facts to simplify response
 3a. select and use: rules for integrating a polynomial function procedure for calculating the value of a definite integral facts to determine the value of the definite integral 	Question 3 (SF 7 marks) a. $\int_{1}^{3} 4x^{2} dx$ $= \frac{4}{3}x^{3} _{1}^{3} \checkmark \checkmark$ $= \frac{4}{3}(3^{3} - 1^{3}) \checkmark$ $= \frac{104}{3} \checkmark \checkmark$ b. $\int_{0}^{2} 6e^{2t} + t dt$ $= \frac{6e^{2t}}{2} + \frac{t^{2}}{2} _{0}^{2}$ $= (3e^{4} + \frac{2^{2}}{2}) - (\frac{6e^{0}}{2} + \frac{0}{2}) \checkmark \checkmark$ $= 3e^{4} + 2 - 3 \checkmark$	 3b. select and use: rules for integrating polynomial function rules for integrating an exponential function procedure for calculating the value of a definite integral recall rule a⁰ = 1 determine value of the definite integral
4. identify $x'(t) = v(t)$ select and use procedure for differentiating a product to determine v(t) translate information into mathematically workable format (determine $v(t) = 0$) select and use procedures (factorising, null factor theorem) recall log laws/exponential function asymptote to identify solution that is 'not possible' rearrange to generate trigonometric equation recall common ratios to determine solution to trigonometric equation	Question 4 (CF 6 marks) Given $x(t) = e^t \sin(t)$ $x'(t) = v(t) \checkmark$ $x'(t) = e^t \cos t + \sin t \times e^t \checkmark \checkmark$ Particle is at rest when $x'(t) = 0 \checkmark \checkmark$ $0 = e^t \cos t + \sin t \times e^t$ $0 = e^t (\cos(t) + \sin(t)) \checkmark$ $\therefore e^t = 0$ not possible $\checkmark \checkmark$ and $\cos(t) + \sin(t) = 0 \checkmark$ $\cos(t) = -\sin(t)$ $\tan(t) = -1 \checkmark$ Recall common ratios and CAST rule $t = \frac{3\pi}{4} \checkmark \operatorname{and} \frac{7\pi}{4} \checkmark$	

5. **Question 5 (CF 6 marks)** translate information into mathematically workable format Given $f(x) = \frac{\ln(2x)}{x}$, x > 0(maximum point occurs when f'(x) = 0) Maximum occurs when f'(x) = 0 \checkmark select and use: • procedure for Use quotient rule: ✓ differentiating a quotient, $f'(x) = \frac{x \times \frac{2}{2x} - (\ln(2x) \times 1)}{x^2} \checkmark \checkmark$ differentiating ln(x) and polynomials to Maximum point f'(x) = 0 $0 = \frac{1 - \ln(2x)}{x^2} \checkmark$ $0 = 1 - \ln(2x) \checkmark$ determine f'(x)• procedures for rearranging the equation $\ln(2x) = 1$ rules for changing from log form to 2x = e $x = \frac{e}{2} \checkmark$ index form $f\left(\frac{e}{2}\right) = \frac{\ln\left(2\times\frac{e}{2}\right)}{\frac{e}{2}}$ \checkmark • substitution to $=\frac{2\ln e}{e}$ $=\frac{2}{e}\checkmark$ determine y-coordinate of maximum point • rules for changing from log form to index form Maximum point of the function $\left(\frac{e}{2}, \frac{2}{e}\right) \checkmark \checkmark$ communicate the coordinates of the maximum point using appropriate terminology **Question 6 (CF 5 marks)** Given at time t = 3 population is 50: $P(3) = 50 = \frac{100}{1 + e^{b-t}} \checkmark$ $50(1 + e^{b-3}) = 100$ $1 + e^{b-3} = 2 \checkmark$ $e^{b-3} = 1$ $\therefore b = 3 \checkmark$ Using chain rule:

 $P'(t) = -100(1 + e^{3-t})^{-2} \times -e^{3-t}$ $\checkmark\checkmark$ $\checkmark\checkmark$ $P'(3) = \frac{-100 \times e^0}{(1+e^0)^2} \checkmark$ $P'(3) = \frac{100}{4} = 25 \checkmark$

The flu is spreading at a rate of 25 students/day on day 3.√

6. identify critical elements:

• P(3) = 50

• P'(3) is required

use algebraic skills to determine b use rules to:

- determine an expression for P'(t)select and use procedure to:
- generate an equation using substitution
- solve equation communicate findings

		1
 11. comprehend concept to decide on method of solution: graph function translate information into a mathematical representation 	Area = $\int_{0}^{1.1499} (H_2 - H) dx$ = $\int_{0}^{1.1499} 0.002 dx \checkmark \checkmark$ = 0.0023 \checkmark Volume = area × width = 0.0023 × .3 \checkmark = 0.00069 km ³ \checkmark	
	(Communication of response $\checkmark \checkmark$)	
generate translated curve and/or identify area between the two curves as the cross-sectional area		
recall rule for determining cross- sectional area		
solve for the volume of snow on the run		
communicate using mathematical symbols and conventions (e.g. units)		
represent ideas in a way that makes sense — relate parts in an orderly, consistent way (justifying procedures)		

© 🗊 © State of Queensland (QCAA) 2024

Licence: https://creativecommons.org/licenses/by/4.0 | Copyright notice: www.qcaa.qld.edu.au/copyright — lists the full terms and conditions, which specify certain exceptions to the licence. | Attribution (include the link): © State of Queensland (QCAA) 2024 www.qcaa.qld.edu.au/copyright.