Mathematical Methods 2019 v1.2

IA2 sample marking scheme

March 2024

Examination (15\%)

This sample has been compiled by the QCAA to model one possible approach to allocating marks in an examination. It matches the examination mark allocations as specified in the syllabus ($\sim 60 \%$ simple familiar, $\sim 20 \%$ complex familiar and $\sim 20 \%$ complex unfamiliar) and ensures that a balance of the objectives are assessed.

Assessment objectives

This assessment instrument is used to determine student achievement in the following objectives:

1. select, recall and use facts, rules, definitions and procedures drawn from all Unit 3 topics
2. comprehend mathematical concepts and techniques drawn from all Unit 3 topics
3. communicate using mathematical, statistical and everyday language and conventions
4. evaluate the reasonableness of solutions
5. justify procedures and decisions by explaining mathematical reasoning
6. solve problems by applying mathematical concepts and techniques drawn from all Unit 3 topics.

Instrument-specific marking guide (ISMG)

Criterion: Foundational knowledge and problem-solving

Assessment objectives

1. select, recall and use facts, rules, definitions and procedures drawn from all Unit 3 topics
2. comprehend mathematical concepts and techniques drawn from all Unit 3 topics
3. communicate using mathematical, statistical and everyday language and conventions
4. evaluate the reasonableness of solutions
5. justify procedures and decisions by explaining mathematical reasoning
6. solve problems by applying mathematical concepts and techniques drawn from all Unit 3 topics

The student work has the following characteristics:	Cut-off	Marks
- consistently correct selection, recall and use of facts, rules, definitions and procedures; authoritative and accurate command of mathematical concepts and techniques; astute evaluation of the reasonableness of solutions and use of mathematical reasoning to correctly justify procedures and decisions; and fluent application of mathematical concepts and techniques to solve problems in a comprehensive range of simple familiar, complex familiar and complex unfamiliar situations.	> 93\%	15
	> 87\%	14
- correct selection, recall and use of facts, rules, definitions and procedures; comprehension and clear communication of mathematical concepts and techniques; considered evaluation of the reasonableness of solutions and use of mathematical reasoning to justify procedures and decisions; and proficient application of mathematical concepts and techniques to solve problems in simple familiar, complex familiar and complex unfamiliar situations.	> 80\%	13
	> 73\%	12
- thorough selection, recall and use of facts, rules, definitions and procedures; comprehension and communication of mathematical concepts and techniques; evaluation of the reasonableness of solutions and use of mathematical reasoning to justify procedures and decisions; and application of mathematical concepts and techniques to solve problems in simple familiar and complex familiar situations.	> 67\%	11
	> 60\%	10
- selection, recall and use of facts, rules, definitions and procedures; comprehension and communication of mathematical concepts and techniques; evaluation of the reasonableness of some solutions using mathematical reasoning; and application of mathematical concepts and techniques to solve problems in simple familiar situations.	> 53\%	9
	> 47\%	8
- some selection, recall and use of facts, rules, definitions and procedures; basic comprehension and communication of mathematical concepts and techniques; inconsistent evaluation of the reasonableness of solutions using mathematical reasoning; and inconsistent application of mathematical concepts and techniques.	> 40\%	7
	> 33%	6
- infrequent selection, recall and use of facts, rules, definitions and procedures; basic comprehension and communication of some mathematical concepts and techniques; some description of the reasonableness of solutions; and infrequent application of mathematical concepts and techniques.	> 27\%	5
	> 20\%	4
- isolated selection, recall and use of facts, rules, definitions and procedures; partial comprehension and communication of rudimentary mathematical concepts and	> 13\%	3
	> 7\%	2

techniques; superficial description of the reasonableness of solutions; and disjointed application of mathematical concepts and techniques.

- isolated and inaccurate selection, recall and use of facts, rules, definitions and $>0 \%$ procedures; disjointed and unclear communication of mathematical concepts and techniques; and illogical description of the reasonableness of solutions.
- does not satisfy any of the descriptors above.

Task

See IA2 sample assessment instrument: Examination (15\%) (available on the QCAA Portal).

Sample marking scheme

Criterion	Marks allocated	Provisional marks
Foundational knowledge and problem-solving Assessment objectives 1, 2, 3, 4,5,6	15	-
Total	$\mathbf{1 5}$	-

The annotations are written descriptions of the expected response for each question and are related to the assessment objectives.

Note: $\checkmark=\frac{1}{2}$ mark
11.
select and use:

- logarithm of a power rule
- logarithm of a division rule OR logarithm of 1 rule
- logarithm of a product rule
- facts to solve

2a.
select and use:

- derivative of e^{x}
- procedure for chain rule (recognise inner and outer function)
- derivative of a trigonometric function

2c.
select and use:

- procedure for chain rule to differentiate a polynomial and a trigonometric function

Marking scheme
 Paper 1 (technology-free)

Question 1 (SF 7 marks)

$$
\begin{aligned}
& \text { a. } x=2 \log _{6}(3)+\log _{6}(4) \quad-\log _{6}(1) \\
& x=\log _{6}(9)+\log _{6}(4)-0 \\
& \checkmark \checkmark \quad \checkmark \checkmark \\
& x=\log _{6}(36) \checkmark \checkmark \\
& x=2 \checkmark \checkmark \\
& \text { b. }\left(e^{x}-2\right)\left(e^{x}-3\right)=0 \\
& \text { Use null factor theorem: } \checkmark \checkmark \\
& e^{x}=2 \text { and } e^{x}=3 \checkmark \checkmark \\
& x=\ln 2 \text { and } x=\ln 3 \checkmark \checkmark
\end{aligned}
$$

Question 2 (SF 13 marks)

a. $f(x)=e^{x}+\sin (2 x)$

$$
f^{\prime}(x)=e^{x}+2 \cos (2 x)
$$

$$
\checkmark \checkmark \checkmark \checkmark \checkmark \checkmark
$$

b. $f(x)=e^{\sin (x)}$
$f^{\prime}(x)=e^{\sin (x)} \times \cos (x)$
$\checkmark \checkmark \checkmark \checkmark \quad \checkmark \checkmark$
c. $f(x)=\cos ^{3}(x)$
$f^{\prime}(x)=3(\cos (x))^{2} \times-\sin (x)$
$\checkmark \checkmark \checkmark \checkmark$
or $-3 \cos ^{2}(x) \sin (x)$

1 b.

comprehend the information is in factorised form
select and use:

- null factor procedure
- rules to change from index form to log form to c solutions for x
$2 b$.
select and use:
- procedure for chain rule to differentiate an exponential function and trigonometric function (recognise inner and outer function)

4.

identify $x^{\prime}(t)=v(t)$
select and use procedure for differentiating a product to determine $v(t)$
translate information into mathematically workable format (determine $v(t)=0$)
select and use
procedures
(factorising, null factor theorem)
recall log
laws/exponential
function asymptote to identify solution that is 'not possible' rearrange to generate trigonometric equation recall common ratios to determine solution to trigonometric equation
d. $f(x)=x+x \ln (x)$

$$
\begin{gathered}
f^{\prime}(x)=1+x \times \frac{1}{x}+\ln (x) \times 1 \\
\checkmark \checkmark \quad \checkmark \checkmark \\
f^{\prime}(x)=2+\ln (x) \checkmark \checkmark
\end{gathered}
$$

Question 3 (SF 7 marks)

a. $\int_{1}^{3} 4 x^{2} d x$

$$
\begin{aligned}
& =\left.\frac{4}{3} x^{3}\right|_{1} ^{3} \checkmark \checkmark \\
& =\frac{4}{3}\left(3^{3}-1^{3}\right) \\
& =\frac{104}{3} \checkmark \checkmark
\end{aligned}
$$

b. $\int_{0}^{2} 6 e^{2 t}+t d t$
$=\frac{6 e^{2 t}}{2}+\left.\frac{t^{2}}{2}\right|_{0} ^{2}$
$=\left(3 e^{4}+\frac{2^{2}}{2}\right)-\left(\frac{6 e^{0}}{2}+\frac{0}{2}\right) \checkmark \checkmark$
$=3 e^{4}+2-3 \checkmark$
$=3 e^{4}-1 \checkmark \checkmark$

Question 4 (CF 6 marks)

Given $x(t)=e^{t} \sin (t)$
$x^{\prime}(t)=v(t) \checkmark$
$x^{\prime}(t)=e^{t} \cos t+\sin t \times e^{t} \checkmark \checkmark$
Particle is at rest when $x^{\prime}(t)=0 \checkmark \checkmark$
$0=e^{t} \cos t+\sin t \times e^{t}$
$0=e^{t}(\cos (t)+\sin (t))$
$\therefore e^{t}=0$ not possible $\checkmark \checkmark$
and $\cos (t)+\sin (t)=0 \checkmark$
$\cos (t)=-\sin (t)$
$\tan (t)=-1 \checkmark$
Recall common ratios and CAST rule
$t=\frac{3 \pi}{4} \quad \checkmark$ and $\frac{7 \pi}{4} \checkmark$

2d.
select and use:

- rule for derivative of a polynomial
- rule for differentiating a product
- rule for derivative of natural logarithm
- facts to simplify response

3b.
select and use:

- rules for integrating polynomial function
- rules for integrating an exponential function
- procedure for calculating the value of a definite integral
recall rule $a^{0}=1$
determine value of the definite integral

5.

translate information into mathematically workable format (maximum point occurs when $f^{\prime}(x)=0$)
select and use:

- procedure for differentiating a quotient, differentiating $\ln (x)$ and polynomials to determine $f^{\prime}(x)$
- procedures for rearranging the equation
- rules for changing from log form to index form
- substitution to determine y-coordinate of maximum point
- rules for changing from log form to index form
communicate the coordinates of the maximum point using appropriate terminology

Question 5 (CF 6 marks)

Given $f(x)=\frac{\ln (2 x)}{x}, x>0$
Maximum occurs when $f^{\prime}(x)=0 \checkmark$
Use quotient rule:
$f^{\prime}(x)=\frac{x \times \frac{2}{2 x}-(\ln (2 x) \times 1)}{x^{2}} \checkmark \checkmark$
Maximum point $f^{\prime}(x)=0$
$0=\frac{1-\ln (2 x)}{x^{2}} \checkmark$
$0=1-\ln (2 x) \checkmark$
$\ln (2 x)=1 \checkmark$
$2 x=e$
$x=\frac{e}{2} \checkmark$
$f\left(\frac{e}{2}\right)=\frac{\ln \left(2 \times \frac{e}{2}\right)}{\frac{e}{2}}$
$=\frac{2 \ln e}{e}$
$=\frac{2}{e} \checkmark$

Maximum point of the function $\left(\frac{e}{2}, \frac{2}{e}\right) \checkmark \checkmark$

Question 6 (CF 5 marks)

Given at time $t=3$ population is 50 :
$P(3)=50=\frac{100}{1+e^{b-t}} \checkmark$
$50\left(1+e^{b-3}\right)=100$
$1+e^{b-3}=2$
$e^{b-3}=1$
$\therefore b=3$ r

Using chain rule:

$$
\begin{aligned}
& P^{\prime}(t)=-100\left(1+e^{3-t}\right)^{-2} \times-e^{3-t} \\
& \checkmark \checkmark \\
& P^{\prime}(3)=\frac{-100 \times e^{0}}{\left(1+e^{0}\right)^{2}} \checkmark \\
& P^{\prime}(3)=\frac{100}{4}=25
\end{aligned}
$$

The flu is spreading at a rate of 25 students/day on day $3 . \checkmark$
6.
identify critical
elements:

- $P(3)=50$
- $P^{\prime}(3)$ is required
use algebraic skills to determine b use rules to:
- determine an expression for $P^{\prime}(t)$
select and use procedure to:
- generate an equation using substitution
- solve equation communicate findings

8a.

translate information into a mathematically workable format (substitute) determine A

8b.
use substitution to generate equation for estimate
comprehend '12 years after they were introduced' requires t value of 12
determine $n(12)$

$$
\begin{aligned}
& 4200=A e^{0.55 \times 8} \checkmark \checkmark \\
& A=\frac{4200}{e^{0.55 \times 8}} \\
& A=51.5648
\end{aligned}
$$

b. Determine $n(12)$
$n(12)=51.5648 e^{0.55 \times 12} \checkmark \checkmark$
$n(12)=37905.036$
12 years after they were introduced, the population will be approximately $37905 . \checkmark$
c. $n(t)=51.5648 e^{0.55 t}$
$n^{\prime}(t)$ models the rate of change of the population \checkmark
$n^{\prime}(t)=28.3606 e^{0.55 t} \checkmark$
Determine when $n^{\prime}(t)=250000$

$$
250000=28.3606 e^{0.55 t} \checkmark \checkmark
$$

$$
8815.05=e^{0.55 t} \checkmark
$$

$t=\frac{\ln (8815.05)}{0.55} \checkmark$
$t=16.5168 \checkmark$ years \checkmark

8c.
comprehend information requires use of derivative function
generate equation to solve using given information
use appropriate method to determine time (include units in years)

Question 9 (SF 4 marks)

Points of intersection are $(0.662,1.89) \checkmark \checkmark$ and $(1.55,4.76)$
9.
use technology to determine both points of intersection
use technology to solve for bounded region
communicate method used

Bounded area $=$
$\int_{.662}^{1.55}\left(-3 e^{-x}+x^{2}+3\right)-\left(2 e^{x}-3 x\right) d x \checkmark \checkmark$

Bounded area $=$

Bounded area $=0.298649 \checkmark \checkmark$

Question 10 (CU 8 marks)

Sketch functions to identify area:

Line contains $(0,0)$ and x intercepts of parabola at points $(0,0)$ and (2, 0)

```
Total area = }\mp@subsup{\int}{0}{2}2x(2-x)dx
10.
translate
information into
mathematically
workable format by
- sketching
- identifying half
    the area equates
    to half the area
    under the
    parabola
use procedure for
determining
definite integrals to
determine the area
under the parabola
and therefore
determine half the
area
use procedure to
determine m in
terms of
intersection point a
use procedure to
determine a using
the area between
the curves
```



```
evaluate the
reasonableness of
the solution
```

11.

comprehend concept to decide on method of solution:

- graph function
- translate information into a mathematical representation
n
generate
translated curve
and/or identify area
between the two
curves as the
cross-sectional
area
recall rule for
determining cross-
sectional area
solve for the
volume of snow on
the run
communicate
using
mathematical
symbols and
conventions (e.g.
units)
represent ideas in
a way that makes
sense - relate
parts in an orderly,
consistent way
(justifying
procedures)
generate
translated curve
between the two curves as the area
recall rule for sectional area
solve for the
volume of snow on
the run
communicate
using
mathematical
symbols and
conventions (e.g.
units)
represent ideas in
a way that makes
sense - relate
parts in an orderly,
consistent way
(justifying
procedures)

Area $=\int_{0}^{1.1499}\left(H_{2}-H\right) d x$

$$
\begin{aligned}
& =\int_{0}^{1.1499} 0.002 d x \checkmark \checkmark \\
& =0.0023 \checkmark
\end{aligned}
$$

Volume $=$ area \times width
$=0.0023 \times .3 \checkmark$
$=0.00069 \mathrm{~km}^{3} \checkmark$
(Communication of response $\checkmark \checkmark$)

© State of Queensland (QCAA) 2024
Licence: https://creativecommons.org/licenses/by/4.0 | Copyright notice: www.qcaa.qld.edu.au/copyright — lists the full terms and conditions, which specify certain exceptions to the licence.|
Attribution (include the link): © State of Queensland (QCAA) 2024 www.qcaa.qld.edu.au/copyright.

