Mathematical Methods 2019 v1.2

IA1: Mid-level annotated sample response
September 2021

Problem-solving and modelling task (20\%)

This sample has been compiled by the QCAA to assist and support teachers to match evidence in student responses to the characteristics described in the instrument-specific marking guide (ISMG).

Assessment objectives

This assessment instrument is used to determine student achievement in the following objectives:

1. select, recall and use facts, rules, definitions and procedures drawn from Unit 3 Topics 2 and/or 3
2. comprehend mathematical concepts and techniques drawn from Unit 3 Topics 2 and/or 3
3. communicate using mathematical, statistical and everyday language and conventions
4. evaluate the reasonableness of solutions
5. justify procedures and decisions by explaining mathematical reasoning
6. solve problems by applying mathematical concepts and techniques drawn from Unit 3 Topics 2 and/or 3.
(i)

Queensland Curriculum
\& Assessment Authority

Instrument-specific marking guide (ISMG)

Criterion: Formulate

Assessment objectives

1. select, recall and use facts, rules definitions and procedures drawn from Unit 3 Topics 2 and/or 3
2. comprehend mathematical concepts and techniques drawn from Unit 3 Topics 2 and/or 3
3. justify procedures and decisions by explaining mathematical reasoning

The student work has the following characteristics:	Marks
- documentation of appropriate assumptions - accurate documentation of relevant observations - accurate translation of all aspects of the problem by identifying mathematical concepts and techniques.	$3-4$
- statement of some assumptions - statement of some observations - translation of simple aspects of the problem by identifying mathematical concepts and techniques.	$1-2$
- does not satisfy any of the descriptors above.	0

Criterion: Solve

Assessment objectives

1. select, recall and use facts, rules, definitions and procedures drawn from Unit 3 Topics 2 and/or 3
2. solve problems by applying mathematical concepts and techniques drawn from Unit 3 Topics 2 and/or 3

The student work has the following characteristics:	Marks
- accurate use of complex procedures to reach a valid solution - discerning application of mathematical concepts and techniques relevant to the task - accurate and appropriate use of technology.	$6-7$
- use of complex procedures to reach a reasonable solution - application of mathematical concepts and techniques relevant to the task - use of technology.	$4-5$
- use of simple procedures to make some progress towards a solution - simplistic application of mathematical concepts and techniques relevant to the task - superficial use of technology.	$2-3$
- inappropriate use of technology or procedures.	1
- does not satisfy any of the descriptors above.	0

Criterion: Evaluate and verify

Assessment objectives

4. evaluate the reasonableness of solutions
5. justify procedures and decisions by explaining mathematical reasoning

The student work has the following characteristics:	Marks
- evaluation of the reasonableness of solutions by considering the results, assumptions and observations - documentation of relevant strengths and limitations of the solution and/or model - justification of decisions made using mathematical reasoning.	
- statements about the reasonableness of solutions by considering the context of the task - statements about relevant strengths and limitations of the solution and/or model. - statements about decisions made relevant to the context of the task.	$4-5$
- statement about a decision and/or the reasonableness of a solution.	$\underline{2-3}$
- does not satisfy any of the descriptors above.	1

Criterion: Communicate

Assessment objective

3. communicate using mathematical, statistical and everyday language and conventions

The student work has the following characteristics:	Marks
- correct use of appropriate technical vocabulary, procedural vocabulary, and conventions to develop the response	
- conerent and concise organisation of the response, appropriate to the genre, including a suitable introduction, body and conclusion, which can be read independently of the task sheet.	$3-4$
- use of some appropriate language and conventions to develop the response - adequate organisation of the response.	$1-2$
- does not satisfy any of the descriptors above.	0

Task

You will formulate at least two mathematical models to describe the sprint of an elite sprinter in a $100 \mathrm{~m}, 200 \mathrm{~m}$ or 400 m sprint race. You should use non-polynomial models. From these models, you will select the best one and analyse it to make recommendations as to how the sprinter could improve their time.

The World Athletics website (https://worldathletics.org/about-iaaf/documents/research-centre) contains split times from a number of athletics world championships. You may use this, or another source approved by your teacher, upon which to base your model.

To complete this task, you must

- respond with a range of understanding and skills, such as using mathematical language, appropriate calculations, tables of data, graphs and diagrams
- provide a response to the context that highlights the real-life application of mathematics
- respond using a written report format that can be read and interpreted independently of the instrument task sheet
- develop a unique response.

See IA1 sample assessment instrument: Problem-solving and modelling task (20\%) (available on the QCAA Portal).

Sample response

Criterion	Marks allocated	Provisional marks
Formulate Assessment objectives 1, 2 and 5	4	3
Solve Assessment objectives 1 and 6	7	4
Evaluate and verify Assessment objectives 4 and 5	5	2
Communicate Assessment objective 3	$\mathbf{4}$	
Overall	$\mathbf{2 0}$	$\mathbf{3}$

The annotations show the match to the instrument-specific marking guide (ISMG) performancelevel descriptors.

accurate and appropriate use of technology
Use of technology to determine parameter values, generate statistics and plot the data and functions.

I input the data from Table 1 into Desmos (Desmos Inc, 2020) and used the curve fitting functionality to determine the values of the parameters that give the best fit for each proposed model. The observations and curves of best fit are shown in Figure 1.

Figure 1. Observations (green dots) and proposed models (black is the sine model and purple is the exponential model)
A screen shot of Desmos that includes the parameter and R^{2} values is show in Figure 2.

Since the R^{2} of the sine model is greater than the exponential model, I selected that as the model to analyse as it best describes the observations. So, the displacement function is given by:

$$
s(t)=66.8466 \sin (2 \pi \times 0.028995 t-1.19493)+60.8291, t>0.183
$$

c
$y_{1} \sim a_{1} \sin \left(2 \pi f_{1} x_{1}-b_{1}\right)+c_{1}$

STATISTICS	RESIDUALS
$R^{2}=0.9997$	e_{3} plot

parameters 0
$a_{1}=66.8466 \quad f_{1}=0.028995$
$b_{1}=1.19493 \quad c_{1}=60.8291$
20

$$
\begin{array}{ll}
y_{1} \sim A_{2} e^{k_{2} x_{1}}+ & c_{2} \\
\text { STATISTICS } & \text { RESIDUALS } \\
R^{2}=0.9975 & e_{2} \text { plot } \\
\text { PARAMETERS } \bullet & \\
A_{2}=166.1 & k_{2}=0.0496288 \\
c_{2}=-170.467 &
\end{array}
$$

Figure 2. Statistics and parameter values for each model from Desmos.
correct use of appropriate technical vocabulary.
Calculus and technica vocabulary are used appropriately.

Solve [4-5]

application of mathematical concepts relevant to the task Shows understanding of calculus concepts and principles relevant to an aspect of the problem.

Evaluate and verify [4-

5]
evaluation of the reasonableness of solutions by_considering the results...
Analytic results have been verified by using an alternative method involving technology.

Solve [2-3]

use of simple procedures to make some progress towards a solution
The writer has used simple procedures but has not developed a full solution as they have not adequately related the model results to areas of improvement.

To analyse Bolt's performance, I differentiated the model to get the velocity,

$$
\begin{aligned}
& \underline{v}(t)=\frac{d}{d t} s(t) \\
& \underline{v}(t)=2 \pi \times 0.02895 \times 66.8466 \cos (2 \pi \times 0.028995 t-1.19493) \\
& \underline{v}(t)=12.1782 \cos (2 \pi \times 0.028995 t-19493)
\end{aligned}
$$

and then again to get the acceleration

$$
\begin{aligned}
& a(t)=\frac{d}{d t} v(t) \\
& a(t)=-2 \pi \times 0.028995 \times 12.1782 \sin (2 \pi \times 0.028995 t-1.19493) \\
& a(t)=-2.21863 \sin (2 \pi \times 0.028995 t-1.19493)
\end{aligned}
$$

These calculations were verified by using Desmos to differentiate and doubledifferentiate the displacement function and then graph them together. The functions differentiated by Desmos were exactly the same as those above; therefore, the procedure is correct.

Figure 3. The velocity (black) and acceleration (blue) functions graphed. The differentiated Desmos functions are hidden by these curves.

In the 2017 world championship, Justin Gatlin beat Bolt by 0.03 s. For Bolt to have beaten Gatlin by 0.01 s, he would have needed to have been $\frac{0.94}{9.90}=$ 0.4% faster. Multiplying each of the split times in Table 1 of Bolt by 0.996 gives new splits shown in Table 2 :

Table 2. New times for Bolt if he were 0.4\% faster.

Displacement.(m)	Time from.start (s)
0 (reactiontime)	0.182
10	1.95
20	2.97
30	3.86
40	4.74
50	5.62
60	6.46
70	7.31
80	$\underline{0}$
90	9.17
20	

(c)(i)
 © State of Queensland (QCAA) 2021

Licence: https://creativecommons.org/licenses/by/4.0 | Copyright notice: www.qcaa.qld.edu.au/copyright lists the full terms and conditions, which specify certain exceptions to the licence. |
Attribution: '© State of Queensland (QCAA) 2021' — please include the link to our copyright notice.

