General Mathematics 2025 v1.2

IA3: Sample marking scheme

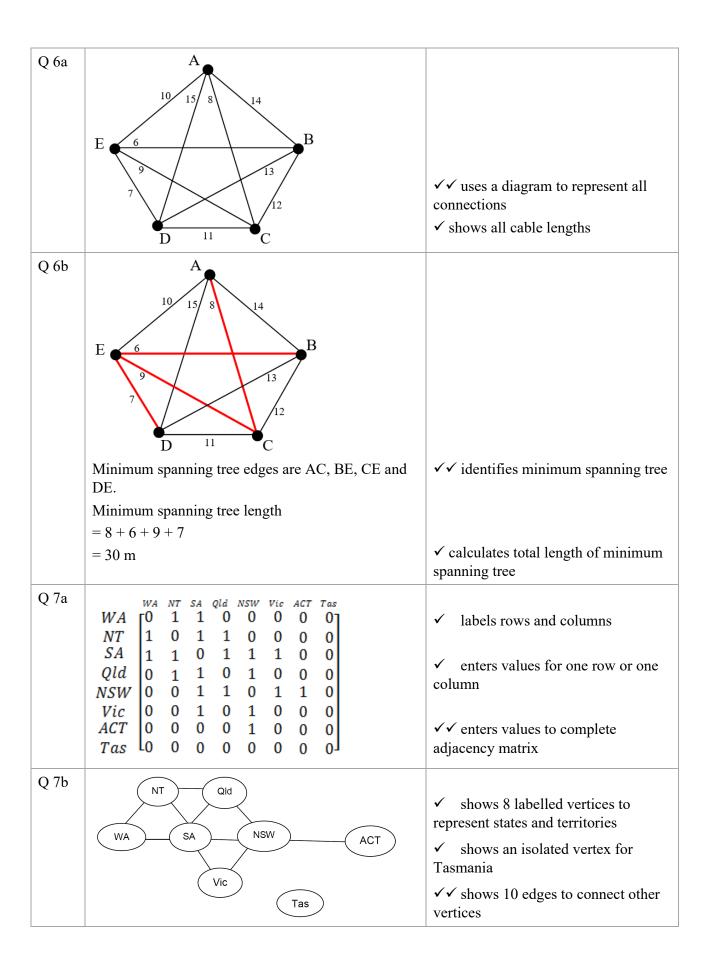
October 2025

This sample has been compiled by the QCAA to model one possible approach to allocating marks in an examination. It matches the examination mark allocations as specified in the syllabus ($\sim 60\%$ simple familiar, $\sim 20\%$ complex familiar and $\sim 20\%$ complex unfamiliar) and ensures that a balance of the objectives are assessed.

Assessment objectives

This assessment instrument is used to determine student achievement in the following objectives:

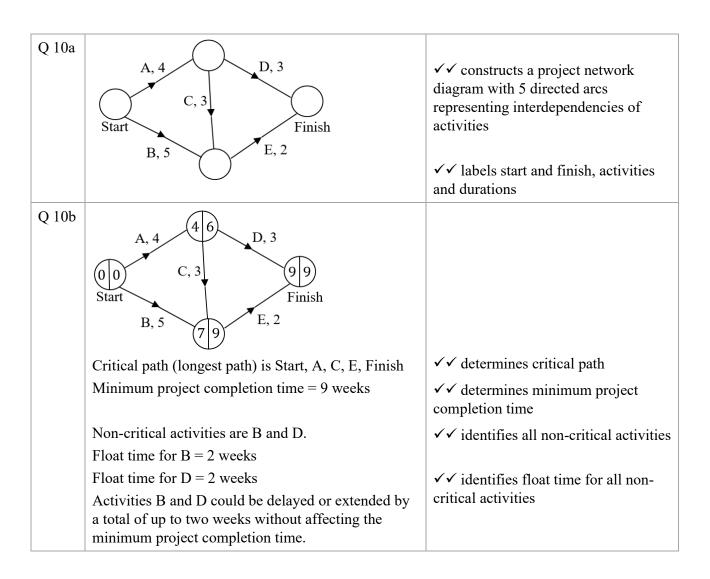
- 1. Recall mathematical knowledge.
- 2. Use mathematical knowledge.
- 3. Communicate mathematical knowledge.
- 4. Evaluate the reasonableness of solutions.
- 5. Justify procedures and decisions.
- 6. Solve mathematical problems.



Marking scheme

Note: $\checkmark = \frac{1}{2}$ mark

	2	
Q 1a	$A_0 = 12\ 000$	
	$A_{n+1} = 1.008A_n$	✓✓ develops recurrence relation
Q 1b	n A _n 0 12 000 1 12 096 2 12 192.77 3 12 290.31 4 12 388.63 After one year, Anna will have \$12 388.63.	 ✓ applies iterative procedure identified in part a ✓ determines value after 1 year
Q 1c	$A = ?$ $P = 12\ 000$ $i = \frac{3.2}{400}$ $= 0.008$ $n = 24$ $A = P(1+i)^{n}$ $= 12\ 000(1.008)^{24}$ $= 14\ 528.94$ The investment would be worth \$14\ 528.94.	 ✓ determines i and n ✓ identifies compound interest formula ✓ substitutes values into formula ✓ determines value after 6 years
Q 2	$A_{n+1} = rA_n - d$ $r = 1 + \frac{6.6}{1200}$ $= 1.0055$ $d = 750$ n 0 $50 000$	 ✓ identifies recurrence relation for reducing balance loan ✓ determines r
	1 $1.0055 \times 50\ 000 - 750 = 49\ 525$ 2 $1.0055 \times 49\ 525 - 750 = 49\ 047.39$ 3 $1.0055 \times 49\ 047.3875 - 750 = 48\ 567.15$ After three months Halim still owes \$48\ 567.15.	✓✓ applies iterative procedure for reducing balance loan ✓✓ determines value after 3 months


Q 3a	5 edges	✓ identifies number of edges
Q 3b	Vertex B	✓ identifies vertex
Q 3c	3 faces	✓ identifies number of faces
Q 4	Loan option 1:	
	Total repayment = $18 \times 12 \times 2000$	
	= 432 000	✓ calculates total repayment for
	Loan option 2:	loan option 1
	$A = 350\ 000$	
	d = ?	
	$i = \frac{3.38}{2600}$	
	$n = 25 \times 26$	✓ determines i and n for loan
	Fortnightly repayment	option 2
	$A = d\left(\frac{1 - \left(1 + i\right)^{-n}}{i}\right)$	✓ identifies present value annuity formula
	$350\ 000 = d \left(\frac{1 - \left(1 + 0.0013\right)^{-650}}{0.0013} \right)$	✓ substitutes values into formula
	$350\ 000 = d \times 438.62$	
	d = 797.96	✓ calculates fortnightly repayment
	Total repayment = $25 \times 26 \times 797.96$	/ coloulates total remarks out for
	= 518 674	✓ calculates total repayment for loan option 2
	Difference = 518 674 – 432 000	
	= 86 674	✓ determines difference in total repayments between loan options
	The bank manager is correct. More than \$80 000 in repayments is saved.	✓ provides justified decision about reasonableness of claim
Q 5a	3 edges	✓ identifies number of edges
Q 5b	Boulia and Cloncurry	✓ identifies adjacent towns
Q 5c	Cloncurry and Kynuna	✓ identifies vertices
	Highest degree is 3	✓ identifies highest degree

Q 8a	An Euler trail uses every edge once only (may visit a vertex more than once).	✓✓ demonstrates understanding of an Euler trail (may be implied if trail is
	Degree of each vertex: A(3), B(3), C(4), D(4), E(2)	identified)
	For an Euler trail, begin with an odd-numbered vertex and end with the other odd-numbered vertex.	✓✓ explains reasoning
	Therefore, beginning with vertex A, one possible trail is: $A - B - C - A - D - C - E - D - B$.	✓✓ identifies an Euler trail
	Total walking distance	
	$= 8 \times 2 = 16 \text{ km}$	✓✓ calculates total walking distance
Q 8b	A Hamiltonian cycle returns to the starting vertex and visits every other vertex once only.	
	Beginning with vertex A, one possible cycle is:	
	A - D - E - C - B - A.	✓✓ identifies a Hamiltonian cycle
	Total distance to walk is = $5 \times 2 = 10 \text{ km}$	✓✓ uses speed to calculate walking
	Time to walk = $10 \div 5 = 2 \text{ h}$	time
	Time spent at 5 castles = 5×20 min	
	= 100 min = 1 h 40 min	
	Total time = $2 h + 1 h 40 min$	
	= 3 hours 40 minutes.	✓✓ calculates total tour time
	5:00 pm - 3 h 40 min = 1:20 pm	
	The family must leave at 1:20 pm to complete their	✓✓ determines latest time to begin
	tour by 5:00 pm.	tour
Q 9	Using a spanning tree will allow students to walk to	
	any building under cover, while minimising the	
	construction cost.	
	A40 m	
	30 m	
	40 m	
	25 m 70 m 35 m	
	30 m C 10 m F	✓✓ identifies a spanning tree
	1 100	
	50 m E 35 m	
	В	
	Total length of walkway	
	= 5 + 10 + 30 + 40 + 35 + 35	
	= 155 m	✓✓ calculates total walkway length
	Number of stormwater connections = 10	determines number of
	Total cost	stormwater connections
	$= 155 \times 180 + 10 \times 1220$	
	_ 40 100	

calculates total cost

The total cost to build the walkway will be \$40 100.

© Î © State of Queensland (QCAA) 2025

 $\textbf{Licence:} \ \text{https://creativecommons.org/licenses/by/4.0} \ | \ \textbf{Copyright notice:} \ www.qcaa.qld.edu.au/copyright -- lists the full terms and conditions, which specify certain exceptions to the licence. \ |$ Attribution (include the link): © State of Queensland (QCAA) 2025 www.qcaa.qld.edu.au/copyright.