# General Mathematics marking guide

External assessment 2023

Paper 1 (57 marks)

Paper 2 (38 marks)

#### Assessment objectives

This assessment instrument is used to determine student achievement in the following objectives:

- 1. select, recall and use facts, rules, definitions and procedures drawn from Units 3 and 4
- 2. comprehend mathematical concepts and techniques drawn from Units 3 and 4
- 3. communicate using mathematical, statistical and everyday language and conventions
- 4. evaluate the reasonableness of solutions
- 5. justify procedures and decisions by explaining mathematical reasoning
- 6. solve problems by applying mathematical concepts and techniques drawn from Units 3 and 4.





## Purpose

This marking guide:

- provides a tool for calibrating external assessment markers to ensure reliability of results
- indicates the correlation, for each question, between mark allocation and qualities at each level of the mark range
- informs schools and students about how marks are matched to qualities in student responses.

### Mark allocation

Where a response does not meet any of the descriptors for a question or a criterion, a mark of '0' will be recorded.

Where no response to a question has been made, a mark of 'N' will be recorded.

Allow FT mark/s — refers to 'follow through', where an error in the prior section of working is used later in the response, a mark (or marks) for the rest of the response can be awarded so long as it still demonstrates the correct conceptual understanding or skill in the rest of the response.

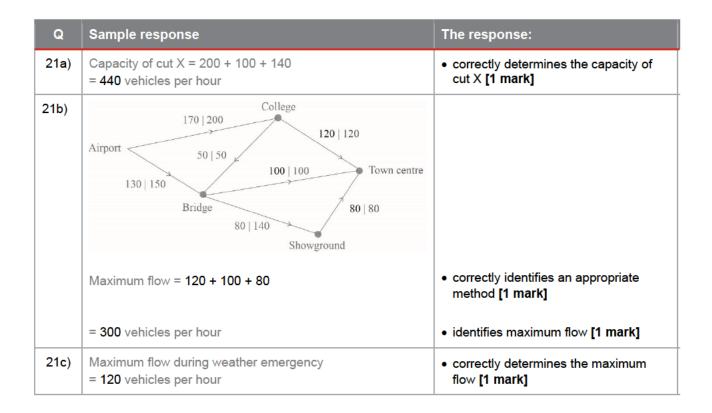
This mark may be implied by subsequent working — the full mathematical reasoning and/or working, as outlined in the sample response and associated mark, is not explicitly stated in the student response, but by virtue of subsequent working there is sufficient evidence to award the mark/s.

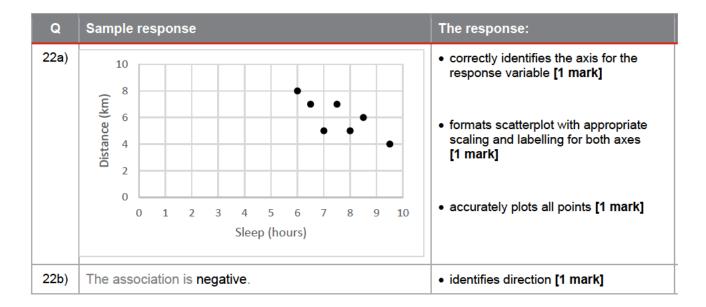
# Marking guide

Paper 1: Multiple choice

| Question | Response |  |  |
|----------|----------|--|--|
| 1        | А        |  |  |
| 2        | С        |  |  |
| 3        | В        |  |  |
| 4        | С        |  |  |
| 5        | В        |  |  |
| 6        | В        |  |  |
| 7        | D<br>A   |  |  |
| 8        |          |  |  |
| 9        | В        |  |  |
| 10       | С        |  |  |
| 11       | С        |  |  |
| 12       | D        |  |  |
| 13       | С        |  |  |
| 14       | В        |  |  |
| 15       | В        |  |  |

#### Paper 1: Short response


| Q  | Sample response                                                                                                                                                                                                                                                                 | The response:                                                                                                                                                                                                      |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 16 | Method 1<br>Angular difference = 90° + 120°<br>= 210°<br>Time difference = $\frac{210^{\circ}}{15^{\circ} / h}$<br>= 14 hours<br>Town B is east of town A, so town B is 14 hours ahead of<br>town A.<br>Local time in town B = 2:00 am + 14 hours = 4:00 pm                     | <ul> <li>correctly determines the angular difference<br/>[1 mark]</li> <li>determines absolute time difference between town<br/>A and town B [1 mark]</li> <li>determines local time in town B [1 mark]</li> </ul> |
|    | Method 2<br>Town B's longitude is east, so its time is ahead of UTC.<br>Time difference = $\frac{120^{\circ}}{15^{\circ}/h}$<br>= 8 hours (UTC <sup>+</sup> 8)<br>Town A's longitude is west, so its time is behind UTC.<br>Time difference = $\frac{90^{\circ}}{15^{\circ}/h}$ |                                                                                                                                                                                                                    |
|    | = 6 hours (UTC $^{-}6$ )                                                                                                                                                                                                                                                        | <ul> <li>correctly determines the time difference for each of<br/>town A and town B compared to 0° [1 mark]</li> </ul>                                                                                             |
|    | Time difference = *8 – ⁻6 = <b>14 hours</b><br>Town B is east of town A, so town B is 14 hours ahead of<br>town A.<br>Local time in town B = 2:00 am + 14 hours = <b>4:00 pm</b>                                                                                                | <ul> <li>determines absolute time difference between town<br/>A and town B [1 mark]</li> <li>determines local time in town B [1 mark]</li> </ul>                                                                   |


| Q  | Sample response                                                                       | The response:                                                           |
|----|---------------------------------------------------------------------------------------|-------------------------------------------------------------------------|
| 17 | $i = \frac{6.6}{12 \times 100}$                                                       |                                                                         |
|    | = 0.0055                                                                              |                                                                         |
|    | $n = 25 \times 12$                                                                    |                                                                         |
|    | = 300                                                                                 | • correctly determines the <i>i</i> and <i>n</i> values <b>[1 mark]</b> |
|    | Amount borrowed, $A = 570\ 000 - 50\ 000$                                             |                                                                         |
|    | $= 520\ 000$                                                                          | <ul> <li>correctly determines the amount borrowed [1 mark]</li> </ul>   |
|    | $A = M\left(\frac{1 - \left(1 + i\right)^{-n}}{i}\right)$                             |                                                                         |
|    | $520\ 000 = M\left(\frac{1 - (1 + 0.0055)^{-300}}{0.0055}\right)$                     | • substitutes into appropriate annuity rule <b>[1 mark]</b>             |
|    | $M = \frac{520\ 000}{\left(\frac{1 - \left(1 + 0.0055\right)^{-300}}{0.0055}\right)}$ |                                                                         |
|    | = 3543.64                                                                             | determines monthly repayment [1 mark]                                   |
|    | Monthly repayment is \$3543.64                                                        |                                                                         |

| Q    | Sample response                                                                           | The response:                                                                                                                                           |
|------|-------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
| 18a) | Site C                                                                                    | <ul> <li>correctly names the site [1 mark]</li> </ul>                                                                                                   |
| 18b) | Western Australia                                                                         | correctly names the state [1 mark]                                                                                                                      |
| 18c) | Sites B and C are in the same standard time zone because<br>they have the same longitude. | <ul> <li>correctly determines sites B and C are in the same standard time zone [1 mark]</li> <li>correctly explains using longitude [1 mark]</li> </ul> |

| Q  | Sample response                                           | The response:                                                                                                 |                                                                                                |
|----|-----------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|
| 19 | Option A: <i>i</i> = 0.056, <i>n</i> = 12                 |                                                                                                               |                                                                                                |
|    | $^{i}$ effective = $\left(1 + \frac{i}{n}\right)^{n} - 1$ | $^{i}$ effective = $\left(1 + \frac{i}{n}\right)^{n} - 1$                                                     |                                                                                                |
|    | $=\left(1+\frac{0.056}{12}\right)^{12}-1$                 | $=\left(1+\frac{0.0562}{4}\right)^4-1$                                                                        | <ul> <li>correctly substitutes into appropriate<br/>rule for either option [1 mark]</li> </ul> |
|    | $\approx 0.05745$                                         | <ul> <li>calculates effective interest rate for<br/>option A [1 mark]</li> </ul>                              |                                                                                                |
|    |                                                           | <ul> <li>calculates effective interest rate for<br/>option B [1 mark]</li> </ul>                              |                                                                                                |
|    | 0.05745 > 0.05739                                         |                                                                                                               |                                                                                                |
|    | Ngarra's decision is reasonable becaus interest rate.     | <ul> <li>provides a statement of<br/>reasonableness linked to effective<br/>interest rate [1 mark]</li> </ul> |                                                                                                |

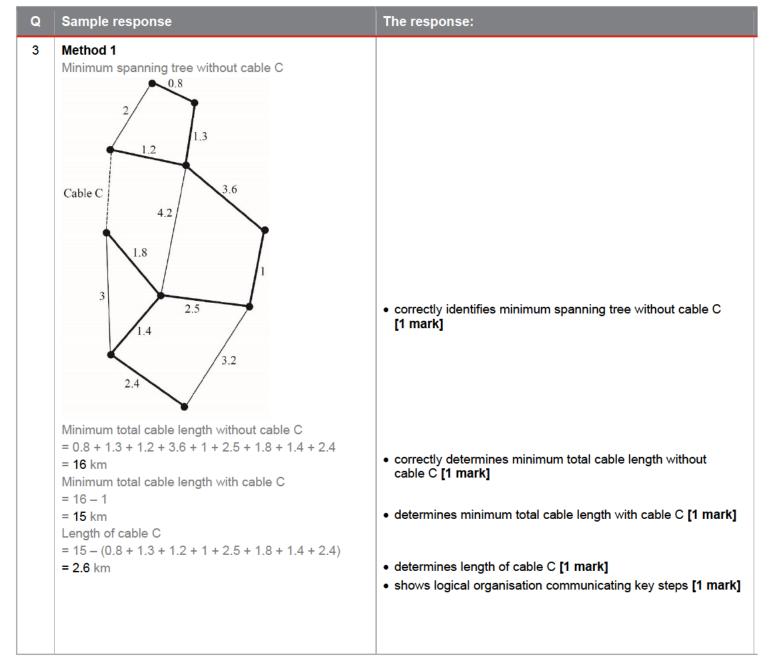
| Q    | Sample response           | The response:                                                                                                                                                                               |
|------|---------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 20a) | v = 4                     |                                                                                                                                                                                             |
|      | f = 3<br>e = 5            | <ul> <li>correctly identifies the number of vertices, faces and edges for<br/>graph 1 [1 mark]</li> </ul>                                                                                   |
|      | v + f - e = 4 + 3 - 5 = 2 | • applies Euler's formula to graph 1 [1 mark]                                                                                                                                               |
| 20b) | Show no crossing edges.   | <ul> <li>correctly identifies the feature to be changed [1 mark]</li> </ul>                                                                                                                 |
| 20c) |                           | <ul> <li>correctly draws graph 2 as a simple connected graph with seven<br/>edges that do not cross and five vertices (one degree 2 vertex,<br/>four degree 3 vertices) [1 mark]</li> </ul> |

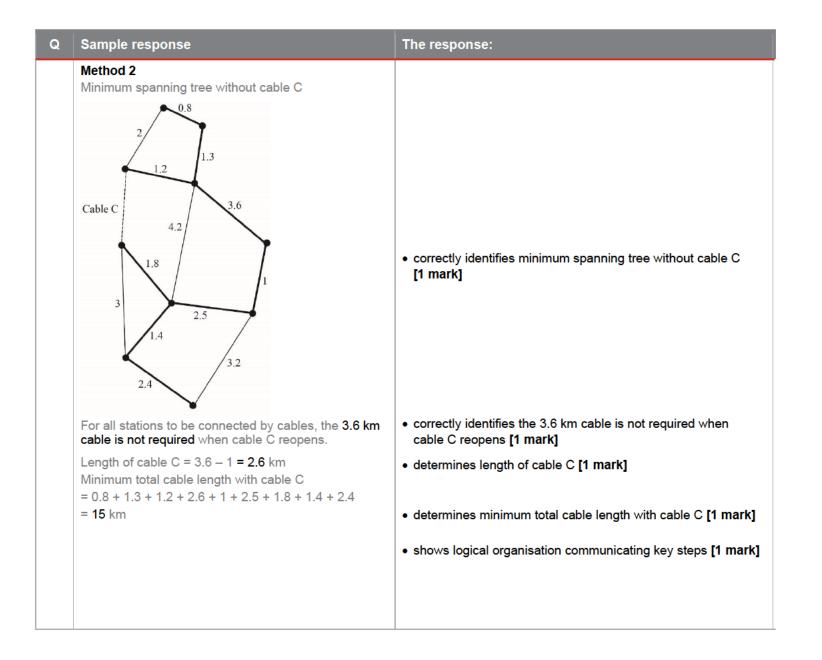




| Q    | Sample response                                                                                                                                                                                                                                                                                       | The response:                                                                                                                                                                                                                         |  |  |
|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| 23a) | Degree = 4                                                                                                                                                                                                                                                                                            | • correctly states the degree [1 mark]                                                                                                                                                                                                |  |  |
| 23b) | 2 edges                                                                                                                                                                                                                                                                                               | <ul> <li>correctly states the number of edges [1 mark]</li> </ul>                                                                                                                                                                     |  |  |
| 23c) | A       B       C       D       E         A       1       1       0       0       1         B       1       0       0       1         B       1       0       0       1         C       0       0       0       1         C       0       0       0       2         D       0       0       2       0 | <ul> <li>correctly completes entries for one<br/>row or one column in a 5 x 5 matrix<br/>[1 mark]</li> <li>correctly enters 1 for number of edges<br/>joining A to A [1 mark]</li> <li>completes adjacency matrix [1 mark]</li> </ul> |  |  |

| Q    | Sample response                                                                                | The response:                                                                                                                                                         |  |
|------|------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 24a) | C, 6<br>B, 20<br>C, 6<br>B, 20<br>C, 6<br>C, 6<br>C, 6<br>C, 6<br>C, 6<br>C, 6<br>C, 6<br>C, 6 | <ul> <li>correctly constructs a network diagram<br/>showing the appropriate sequence for<br/>all tasks [1 mark]</li> <li>labels all tasks and durations on</li> </ul> |  |
|      |                                                                                                | <ul> <li>network diagram [1 mark]</li> </ul>                                                                                                                          |  |
|      | D, 8 10 44 F, 4                                                                                | <ul> <li>shows earliest and latest starting<br/>times for all tasks [1 mark]</li> </ul>                                                                               |  |
| 24b) | Critical activities: A, C, E, G.                                                               | determines critical activities [1 mark]                                                                                                                               |  |
|      | Minimum completion time = 2 + 6 + 40 + 2 = <b>50 minutes</b>                                   | <ul> <li>determines minimum completion time,<br/>including units [1 mark]</li> </ul>                                                                                  |  |


| Q    | Sample response                                                 | The response:                                                                                                    |  |  |
|------|-----------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|--|--|
| 25a) | Latitude and longitude of $X = 3^{\circ} S \ 141^{\circ} E$     | <ul> <li>correctly determines the latitude and<br/>longitude of X to the nearest degree<br/>[1 mark]</li> </ul>  |  |  |
| 25b) | Latitude and longitude of $Y = 9^{\circ} S \ 141^{\circ} E$     | <ul> <li>correctly determines the latitude and<br/>longitude of Y to the nearest degree<br/>[1 mark]</li> </ul>  |  |  |
| 25c) | Angular distance = $9^{\circ} - 3^{\circ}$                      |                                                                                                                  |  |  |
|      | $= 6^{\circ}$<br>D = 111.2 × angular distance<br>= 111.2 × 6°   | <ul> <li>determines angular distance [1 mark]</li> <li>substitutes into appropriate rule<br/>[1 mark]</li> </ul> |  |  |
|      | $\approx 667.2 \; km$ The distance between X and Y is 667.2 km. | determines distance [1 mark]                                                                                     |  |  |


#### Paper 2: Short response

| Q | Sample response                                                  | The response:                                                                                                                                                                                                                                                                                                                                                                           |
|---|------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1 | Method 1<br>$ \begin{array}{ccccccccccccccccccccccccccccccccccc$ | <ul> <li>correctly reduces each column [1 mark]</li> <li>reduces each row [1 mark]</li> <li>reduces each row [1 mark]</li> <li>continues algorithm steps until number of lines needed to cover all zeroes equals number of tasks [1 mark]</li> <li>assigns each athlete to complete one section [1 mark]</li> <li>predicts minimum total relay time including units [1 mark]</li> </ul> |


| Q | Sample response                                                                                                                                                                                                    | The response:                                                                                                                              |  |
|---|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|--|
|   | Method 2                                                                                                                                                                                                           |                                                                                                                                            |  |
|   | S       C       R       row reduction         J       40       56       66       -40         K       36       60       72       -36         L       25       48       78       -25                                 |                                                                                                                                            |  |
|   | $\begin{bmatrix} 0 & 16 & 26 \\ 0 & 24 & 36 \\ 0 & 23 & 53 \end{bmatrix}$<br>column<br>reduction $-0 - 16 - 26$                                                                                                    | <ul> <li>correctly reduces each row</li> <li>[1 mark]</li> </ul>                                                                           |  |
|   | $\begin{bmatrix} 0 & -0 & -0 \\ 0 & 8 & 10 \\ 0 & 7 & 27 \end{bmatrix}$                                                                                                                                            | • reduces each column [1 mark]                                                                                                             |  |
|   | Number of lines needed to cover all zeroes < number of tasks<br>2 < 3, so continue algorithm steps.<br>Smallest uncovered number is 7. Subtract 7 from all uncovered<br>numbers and add 7 to number covered twice. |                                                                                                                                            |  |
|   | $\begin{bmatrix} 7 & 0 & 0 \\ 0 & 1 & 3 \\ 0 & 0 & 20 \end{bmatrix}$<br>Number of lines needed to cover all zeroes = number of tasks                                                                               | <ul> <li>continues algorithm steps until<br/>number of lines needed to cover all<br/>zeroes equals number of tasks<br/>[1 mark]</li> </ul> |  |
|   | 3 = 3, so assign tasks.<br>To minimise the total relay time, assign <b>Jane to run</b> , <b>Knox to swim</b> and<br><b>Levi to cycle</b> .                                                                         | <ul> <li>assigns athlete to complete one section [1 mark]</li> </ul>                                                                       |  |
|   | Predicted minimum total relay time = 66 + 36 + 48<br>= <b>150 min</b><br>= 2 h 30 min                                                                                                                              | <ul> <li>predicts minimum total relay time<br/>including units [1 mark]</li> </ul>                                                         |  |

| Q | Sample response |        |                             |                   |                          |                     | The response:              |                                                                                                             |
|---|-----------------|--------|-----------------------------|-------------------|--------------------------|---------------------|----------------------------|-------------------------------------------------------------------------------------------------------------|
| 2 | Year            | Season | Number<br>of skin<br>wounds | Yearly<br>average | Number<br>Yearly average | Seasonal<br>indices | Deseseasonalised<br>number | <ul> <li>correctly determines the yearly<br/>averages [1 mark]</li> <li>determines number/yearly</li> </ul> |
|   | 2021            | Autumn | 285                         | 242               | 1.1776                   | 1.2307              | 232                        | average values [1 mark]                                                                                     |
|   |                 | Winter | 28                          |                   | 0.1157                   | 0.1090              | 257                        | <ul> <li>determines seasonal indices [1 mark]</li> </ul>                                                    |
|   |                 | Spring | 195                         |                   | 0.8057                   | 0.7982              | 244                        | determines deseasonalised                                                                                   |
|   |                 | Summer | 460                         |                   | 1.9008                   | 1.8620              | 247                        | numbers [1 mark]                                                                                            |
|   | 2022            | Autumn | 276                         | 215               | 1.2837                   | 1.2307              | 224                        |                                                                                                             |
|   |                 | Winter | 22                          |                   | 0.1023                   | 0.1090              | 202                        |                                                                                                             |
|   |                 | Spring | 170                         |                   | 0.7906                   | 0.7982              | 213                        |                                                                                                             |
|   |                 | Summer | 392                         |                   | 1.8232                   | 1.8620              | 211                        |                                                                                                             |
|   |                 |        |                             |                   |                          |                     |                            |                                                                                                             |





| Q Sample re                                                                                                                                                         | sponse                                                                                                                                                                                                                                                                                      | The response:                                                                                                                                                                                                                                                                                                                                                                                             |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4 Calculate c<br>Dataset<br>$t_{vs} f$<br>$p_{vs} f$<br>0.8 > 0.3<br>The explan-<br>association<br>y = a + bx<br>Using calc<br>Equation is<br>f = -130 + a<br>= 420 | <b>Correlation coefficient for each dataset.</b><br><b>Correlation coefficient</b> , <i>r</i><br>0.3<br>0.8<br><b>atory variable</b> for the stronger linear<br>is <i>p</i> , number of people fishing.<br>culator, $a = -130$ , $b = 11$<br>in terms of given variables is<br>+11 <i>p</i> | <ul> <li>correctly calculates correlation coefficient for each dataset [1 mark]</li> <li>identifies explanatory variable for stronger linear association [1 mark]</li> <li>determines least-squares line equation for dataset with stronger linear association [1 mark]</li> <li>substitutes value for relevant explanatory variable [1 mark]</li> <li>predicts number of fish caught [1 mark]</li> </ul> |



| Q | Sample response                                                                                                                                                                                                              | The response:                                                                                                                                                                  |
|---|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 6 | Compare R <sup>2</sup> values: 0.95 < 0.96.<br>So, age explains a higher percentage of the account balance variation for<br>the industry B dataset.                                                                          | <ul> <li>correctly identifies dataset for which age<br/>explains a higher percentage of the<br/>account balance variation [1 mark]</li> </ul>                                  |
|   | Linear model for industry A:<br>Let $x = age$ , $y = account balance$<br>y = bx + a<br>Using calculator, $b = 7910$ and $a = -205520$<br>y = 7910x + -205520<br>Linear model for industry B:                                 | <ul> <li>correctly determines linear model for age<br/>vs account balance for industry A data<br/>[1 mark]</li> </ul>                                                          |
|   | Let $x = age$ , $y = account balance$<br>y = bx + a<br>Using calculator, $b = 9570$ and $a = -243440$<br>y = 9570x + -243440<br>40-year-old Leigh works in industry B; substitute $x = 40$<br>$y = 9570 \times 40 + -243440$ | <ul> <li>correctly determines linear model for age<br/>vs account balance for industry B data<br/>[1 mark]</li> </ul>                                                          |
|   | = <b>139 360</b><br>Tony's age = 40 + 10 = 50<br>Tony works in industry A; substitute <i>x</i> = 50                                                                                                                          | <ul> <li>substitutes x = 40 into appropriate<br/>equation and calculates Leigh's current<br/>account balance [1 mark]</li> </ul>                                               |
|   | y = 7910 x 50 + -205 520<br>= 189 980<br>Difference = 189 980 - 139 360                                                                                                                                                      | <ul> <li>substitutes x = 50 into appropriate<br/>equation and calculates Tony's current<br/>account balance [1 mark]</li> </ul>                                                |
|   | = 50 620<br>The difference in account balances for Leigh and Tony is predicted to be<br>\$50 620.                                                                                                                            | <ul> <li>calculates difference in current account<br/>balances for Leigh and Tony [1 mark]</li> <li>shows logical organisation communicating<br/>key steps [1 mark]</li> </ul> |

| Q | Sample response                                                                                                                                                                                                                           | The response:                                                                                                                                                                                                              |
|---|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7 | Method 1<br>Compound interest investment<br>$A = P(1+i)^{n}$ $= 100\ 000 \left(1 + \frac{3.8}{12 \times 100}\right)^{5 \times 12}$ $= 120\ 888.66$ The balance of the investment account is \$120\ 888.66. Perpetuity<br>$M = A \times i$ | <ul> <li>correctly substitutes into an appropriate rule for compound interest investment [1 mark]</li> <li>determines balance of investment account [1 mark]</li> <li>correctly substitutes into an appropriate</li> </ul> |
|   | $6000 = A \times 0.04$ $A = \frac{6000}{0.04}$ $= 150\ 000$ The present value of the perpetuity needs to be \$150\ 000. 120 888.66 < 150\ 000                                                                                             | rule for perpetuity [1 mark] <ul> <li>determines present value of perpetuity</li> <li>[1 mark]</li> </ul>                                                                                                                  |
|   | The compound interest investment will not provide enough money to finance the perpetuity.                                                                                                                                                 | <ul> <li>determines if the compound interest<br/>investment is large enough to finance the<br/>perpetuity [1 mark]</li> </ul>                                                                                              |

| Q | Sample response                                                                                          | The response:                                                                                  |
|---|----------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|
|   | Method 2                                                                                                 |                                                                                                |
|   | Perpetuity                                                                                               |                                                                                                |
|   | $M = A \times i$                                                                                         |                                                                                                |
|   | $6000 = A \times 0.04$                                                                                   | <ul> <li>correctly substitutes into an appropriate<br/>rule for perpetuity [1 mark]</li> </ul> |
|   | $A = \frac{6000}{0.04}$                                                                                  |                                                                                                |
|   | 0.04                                                                                                     |                                                                                                |
|   | $=150\ 000$                                                                                              | <ul> <li>determines present value of perpetuity [1 mark]</li> </ul>                            |
|   | The present value of the perpetuity needs to be \$150 000.                                               |                                                                                                |
|   | Compound interact investment                                                                             |                                                                                                |
|   | Compound interest investment<br>Find principal, <i>P</i> , for balance needing to be at least \$150 000. |                                                                                                |
|   |                                                                                                          |                                                                                                |
|   | $A = P\left(1+i\right)^n$                                                                                |                                                                                                |
|   | $(1.50,000, p(1.3.8))^{5\times 12}$                                                                      | • correctly substitutes into an appropriate                                                    |
|   | $150\ 000 = P\left(1 + \frac{3.8}{12 \times 100}\right)^{5 \times 12}$                                   | rule for compound interest investment                                                          |
|   |                                                                                                          | [1 mark]                                                                                       |
|   | $P = \frac{150000}{(5\times12)}$                                                                         |                                                                                                |
|   | $P = \frac{150\ 000}{\left(1 + \frac{3.8}{12 \times 100}\right)^{5 \times 12}}$                          |                                                                                                |
|   | $\left(\begin{array}{c}12\times100\right)$                                                               |                                                                                                |
|   | = 124 081.11                                                                                             | <ul> <li>determines required principal for<br/>investment account [1 mark]</li> </ul>          |
|   | The principal needs to be \$124 081.11.                                                                  | intestion decount [1 mark]                                                                     |
|   |                                                                                                          |                                                                                                |
|   | 100 000 < 124 081.11                                                                                     |                                                                                                |
|   | The <b>compound interest investment</b> will not provide enough money to<br>finance the perpetuity.      | determines if the compound interest     investment is large enough to finance the              |
|   | mance the perpetuity.                                                                                    | investment is large enough to finance the<br>perpetuity <b>[1 mark]</b>                        |
|   |                                                                                                          | porporary [1 man]                                                                              |

© State of Queensland (QCAA) 2023

Licence: https://creativecommons.org/licenses/by/4.0 | Copyright notice: www.qcaa.qld.edu.au/copyright — lists the full terms and conditions, which specify certain exceptions to the licence. | Attribution: © State of Queensland (QCAA) 2023

CC