General Mathematics marking guide

External assessment 2022

Short response (95 marks)

Assessment objectives

This assessment instrument is used to determine student achievement in the following objectives:

1. select, recall and use facts, rules, definitions and procedures drawn from Units 3 and 4
2. comprehend mathematical concepts and techniques drawn from Units 3 and 4
3. communicate using mathematical, statistical and everyday language and conventions
4. evaluate the reasonableness of solutions
5. justify procedures and decisions by explaining mathematical reasoning
6. solve problems by applying mathematical concepts and techniques drawn from Units 3 and 4.

Purpose

This marking guide:

- provides a tool for calibrating external assessment markers to ensure reliability of results
- indicates the correlation, for each question, between mark allocation and qualities at each level of the mark range
- informs schools and students about how marks are matched to qualities in student responses.

Mark allocation

Where a response does not meet any of the descriptors for a question or a criterion, a mark of ' 0 ' will be recorded.

Where no response to a question has been made, a mark of ' N ' will be recorded.
Allow FT mark/s — refers to 'follow through', where an error in the prior section of working is used later in the response, a mark (or marks) for the rest of the response can be awarded so long as it still demonstrates the correct conceptual understanding or skill in the rest of the response.
This mark may be implied by subsequent working - the full mathematical reasoning and/or working, as outlined in the sample response and associated mark, is not explicitly stated in the student response, but by virtue of subsequent working there is sufficient evidence to award the mark/s.

Marking guide

Paper 1 Multiple choice

Question	Response
1	B
2	C
3	A
4	D
5	B
6	C
7	C
8	B
9	D
10	D
11	D
12	A
13	A
14	
15	

Paper 1 Short response

Q	Sample response	The response:
16a)	$n=42.6 t+55.4$	- correctly determines the equation of the least- squares line [1 mark]
16b)	Let $t=21$ $n=42.6(21)+55.4$ $=950$ The predicted number of sales is 950.	- substitutes into equation from Question 16a) [1 mark]
- predicts number of sales [1 mark]		

Q	Sample response	The response:
17a)	$\begin{aligned} & r=1+\frac{i}{n} \\ & 1.00375=1+\frac{i}{12} \\ & 0.00375=\frac{i}{12} \\ & i=0.045 \end{aligned}$ Therefore, the annual interest rate is 4.5% p.a. compounding monthly.	- correctly substitutes into an appropriate rule [1 mark] - calculates annual interest rate [1 mark]
17b)	Method 1: Recursion $\begin{aligned} & A_{0}=50000 \\ & A_{1}=50187.50 \\ & A_{2}=50375.70 \\ & A_{3}=50564.61 \\ & A_{4}=50754.23 \\ & A_{5}=50944.56 \\ & A_{6}=51135.60 \end{aligned}$ Therefore, the investment would exceed $\$ 51000$ at 6 months. Method 2: Compound interest rule $A=P(1+i)^{n}$ $51000=50000 \times 1.00375^{n}$ Using trial and error: when $n=5, A=50944.56$ $n=6, A=51135.60$ Therefore, the investment will exceed $\$ 51000$ at 6 months.	- correctly uses an appropriate method [1 mark] - determines when the investment would exceed $\$ 51000$ [1 mark]

Q	Sample response	The response:		
18	Arithmetic sequence $t_{1}=87$	• correctly determines t_{1} [1 mark]		
$d=t_{2}-t_{1}$				
$=209-87$				
$=122$				
	$t_{n}=t_{1}+(n-1) d$ $\therefore t_{n}=87+122(n-1)$ At 25 weeks, $n=25$ $t_{25}=87+122 \times 24$ $t_{25}=3015$	• correctly determines d [1 mark]	\quad	- uses an arithmetic sequence [1 mark]
:---				

Q Sample response
The response:
19a) Trend - long term is positive because the amount of rainfall generally increases as time increases.

- appropriately describes the long-term trend [1 mark]

Seasonality - The data is seasonal with a high 4th quarter every year.

19b) y-intercept - The model predicts that 156.5 mm of rainfall was falling in the 4th quarter of 2015.

Slope - On average an additional 1.763 mm of rainfall was precipitated each quarter.

- appropriately describes the seasonality [1 mark]
- appropriately interprets the y-intercept [1 mark]
- appropriately interprets the slope [1 mark]

| Q | Sample response | The response: |
| :---: | :--- | :--- | :--- |
| 21a) | RWPDR | • correctly identifies one cycle [1 mark] |

Q	Sample response	The response:
22a)	Marovoay $16.1^{\circ} \mathrm{S} 46.6^{\circ} \mathrm{E}$ lakora $\quad 23.1^{\circ} \mathrm{S} 46.6^{\circ} \mathrm{E}$	- correctly determines the latitudes for both locations within $\pm 0.2^{\circ}$ [1 mark]
22b)	$\begin{aligned} \text { Angular distance } & =23.1-16.1 \\ & =7 \end{aligned}$ $\begin{aligned} \text { Distance } & =111.2 \times \text { angular distance } \\ & =111.2 \times 7 \\ & =778.4 \end{aligned}$ Marovoay is approximately 778 km north of lakora.	- determines angular distance [1 mark] - substitutes into appropriate distance formula [1 mark] - determines distance, including units [1 mark]

Q	Sample response	The response:
23a)	$\begin{aligned} m & =\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \\ & =\frac{40-20}{7-2} \\ & =\frac{20}{5} \\ & =4 \end{aligned}$ $\begin{aligned} & p-p_{1}=m\left(n-n_{1}\right) \\ & p-20=4(n-2) \\ & p-20=4 n-8 \\ & p=4 n+12 \end{aligned}$	- correctly determines the slope [1 mark] - determines equation of least-squares line [1 mark]
23b)	$\begin{aligned} & p=4(15)+12 \\ & p=72 \end{aligned}$ A person with 15 years experience could expect an hourly pay of $\$ 72$.	- substitutes into equation from Question 23a) [1 mark] - predicts hourly pay, including units [1 mark]

Q 24a) $^{\text {Sample response }}$

Q	Sample response	The response:
25a)	$\begin{aligned} i & =\frac{2.4}{1200} \\ & =0.002 \\ n & =15 \times 12 \\ & =180 \\ M & =993.14 \\ A & =M\left(\frac{1-(1+i)^{-n}}{i}\right) \\ & =993.14\left(\frac{1-(1+i)^{-180}}{i}\right) \\ & =150000.29 \end{aligned}$ They borrowed \$150 000.	- correctly determines the i, n and M values [1 mark] - substitutes into the appropriate annuity formula [1 mark] - determines amount of money borrowed, including units [1 mark]
25b)	$\begin{aligned} & A_{n+1}=r A_{n}-R \\ & A_{n+1}=\left(1+\frac{2.4}{1200}\right) A_{n}-993.14 \\ & A_{n+1}=1.002 A_{n}-993.14 \end{aligned}$	- correctly selects the appropriate formula [1 mark] - determines recurrence relation [1 mark]

Paper 2 Short response

Q	Sample response	The response:
1	Let $x=$ autumn's seasonal index	
	Total of seasonal indices:	
	$1.11+1.42+0.62+x=4$	- correctly identifies the sum of all the seasonal indices [1 mark]
	$\therefore x=0.85$	- correctly determines autumn's seasonal index [1 mark]
	Actual value for autumn	
	$\underset{\text { value }}{\underset{\text { actual }}{\text { deseasonalised }} \times \underset{\text { value }}{\text { seasonal }}}$	
	$\begin{aligned} & =36.4 \times 0.85 \\ & =30.94 \end{aligned}$	- uses an appropriate method for determining actual value [1 mark]
	In autumn they had actual sales of 30940 swimsuits.	- determines actual sales for autumn [1 mark]

2 Monthly amount
$A=M\left(\frac{(1+i)^{n}-1}{i}\right)$
$51343.85=M\left(\frac{\left(1+\frac{0.086}{12}\right)^{48}-1}{\frac{0.086}{12}}\right)$
$51343.85=M \times 57.0487$
$\therefore M=900$

Fortnightly annuity balance
$A=M\left(\frac{(1+i)^{n}-1}{i}\right)$
$A=450\left(\frac{\left(1+\frac{0.079}{26}\right)^{104}-1}{\frac{0.079}{26}}\right)$
$=54941.61$

Diff $=54941.61-51343.85$
$=3597.76$

- correctly substitutes parameters into the

The advice that she would have been at least $\$ 3000$ better off is reasonable as $\$ 3597.76>\$ 3000$.
appropriate annuity rule [1 mark]

- correctly determines the monthly amount [1 mark]
- determines value of fortnightly annuity [1 mark]
- determines difference in annuity balances [1 mark]
- compares values to evaluate the reasonableness of the advice [1 mark]

$3 x$ parameters

$x=1,2, \ldots, 10$
$\bar{x}=5.5$
$s_{x}=3.02765$
Given
$\bar{y}=9660$
$s_{y}=3010$
$r=0.9987$

Least-squares line parameters
$b=r \frac{S_{y}}{S_{x}}$
$=0.9987 \times \frac{3010}{3.02765}$
$=992.878$
$a=\bar{y}-b \bar{x}$
$=9660-992.878 \times 5.5$
$=4199.17$
Profit in the 11th year
$y=a+b x$
$=4199.17+992.878(11)$
$=15120.83$
= \$15 121

- determines 11 th year profit to the nearest dollar [1 mark]
- shows logical organisation communicating key steps [1 mark]

Q	Sample response	The response:
4	Network diagram Shortest path $=M-V-B-R-F$	- correctly represents the connected towns as a network [1 mark] - correctly includes lengths on the network [1 mark] - determines shortest current path [1 mark]
	$\begin{aligned} & =16+12+10+15 \\ & =53 \end{aligned}$	- identifies length of shortest path [1 mark]
	$\begin{aligned} & \text { New road length }=53-4 \\ & =49 \end{aligned}$ The new road will be 49 km long.	- determines new road length [1 mark]

Total length of removed paths

$$
=120+185+170+170
$$

$=645$

Annual savings
$=645 \times 214$
$=138030$
\therefore The manager is correct and they will save more than $\$ 138000$ if they remove the unnecessary paths to all nine key locations.

- correctly identifies minimum spanning tree [1 mark]
- correctly calculates total length of the removed paths [1 mark]
- calculates annual savings [1 mark]
- compares values to evaluate the reasonableness of the belief [1 mark]
- shows logical organisation communicating key steps [1 mark]

6 Slope sequence

$-0.8,0.4,-0.2$,
This forms a geometric sequence with $t_{1}=-0.8$

- correctly determines the geometric sequence parameters for the slopes [1 mark]

$$
\therefore t_{n}=-0.8 \times(-0.5)^{(n-1)}
$$

y-intercept sequence
1.2, 2.7, 4.2, ..

This forms an arithmetic sequence with $t_{1}=1.2$ and $d=1.5$.
$\therefore t_{n}=1.2+(n-1) \times 1.5$

The equation for Line 5
$m=-0.8 \times(-0.5)^{4}$
$=-0.05$
$c=1.2+4 \times 1.5$
$=7.2$
$\therefore y_{5}=-0.05 x+7.2$
Solve simultaneously
$y_{1}=y_{5}$
$\therefore-0.8 x+1.2=-0.05 x+7.2$
$\therefore-0.75 x=6$
$\therefore x=-8$
sub into y_{1}
$\therefore y=-0.8(-8)+1.2$
$\therefore y=7.6$
The intersection point is $(-8,7.6)$.

- determines x-coordinate of intersection point [1 mark]
- determines y-coordinate of intersection point [1 mark]
- shows logical organisation communicating key steps [1 mark]

7 Ship's travel time from X to Tarawa
speed $=\frac{\text { distance }}{\text { time }}$
$50=\frac{1350}{\text { time }}$
\therefore time $=27$ hours
Ship's travel time is 27 hours.
Time difference between Tarawa (GMT +12) and X (GMT -12)
$+12-(-12)=24$ hours
\therefore Tarawa is 24 hours ahead of X .

Time difference between Queensland (GMT +10) and
Tarawa (GMT +12)
$+10-(+12)=-2$ hours
\therefore Queensland is 2 hours behind Tarawa.
Tarawa time at time of message
$=6: 12$ am Wednesday +24 hours
= 6:12 am Thursday
Tarawa time when ship arrives in Tarawa
$=6: 12$ am Thursday +27 hours
= 9:12 am Friday
Queensland time when ship arrives in Tarawa
= 9:12 am Friday -2 hours
= 7:12 am Friday

- correctly substitutes into an appropriate rule [1 mark]
- correctly calculates ship's travel time of 27 hours [1 mark]
- correctly determines the time difference between Tarawa and X [1 mark]
- correctly determines the time difference between Queensland and Tarawa [1 mark]
- appropriately applies ship's travel time and both time differences to 6:12 am Wednesday [1 mark]
- determines time and day in Queensland at time of ship's arrival in Tarawa [1 mark]
- shows logical organisation, communicating key steps [1 mark]

C State of Queensland (QCAA) 2022
Licence: https://creativecommons.org/licenses/by/4.0 | Copyright notice: www.qcaa.qld.edu.au/copyright — lists the full terms and conditions, which specify certain exceptions to the licence. | Attribution: © State of Queensland (QCAA) 2022

