General Mathematics v1.2

Mensuration			
circumference of a circle	$C=2 \pi r$	area of a circle	$A=\pi r^{2}$
area of a parallelogram	$A=b h$	area of a trapezium	$A=\frac{1}{2}(a+b) h$
area of a triangle	$A=\frac{1}{2} b h$	total surface area of a cone	$S=\pi r s+\pi r^{2}$
total surface area of a cylinder	$S=2 \pi r h+2 \pi r^{2}$	surface area of a sphere	$S=4 \pi r^{2}$
volume of a cone	$V=\frac{1}{3} \pi r^{2} h$	volume of a cylinder	$V=\pi r^{2} h$
volume of a prism	$V=A h$	volume of a pyramid	$V=\frac{1}{3} A h$
volume of a sphere	$V=\frac{4}{3} \pi r^{3}$		
Heron's rule	$A=\sqrt{s(s-a)(s-b)(s-c), \text { where } s=\frac{a+b+c}{2}}$		
Earth geometry	$D=111.2 \times$ angular distance	$D=111.2 \cos \theta \times$ angular distance	

Finance			
simple interest	$I=\operatorname{Pin}$	compound interest	$A=P(1+i)^{n}$
effective annual rate of interest	$i_{\text {effective }}=\left(1+\frac{i}{n}\right)^{n}-1$	dividend yield	$\frac{\text { dividend }}{\text { share price }} \times 100$
price to earnings ratio (of a share)	P/E ratio $=\frac{\text { market price per share }}{\text { annual earnings per share }}$		
recurrence relation for reducing balance loans	$A_{n+1}=r A_{n}-R$	recurrence relation for compound interest	$A_{n+1}=r A_{n}$
recurrence relation for annuities	$A_{n+1}=r A_{n}+d$	$A=M\left(\frac{1-(1+i)^{-n}}{i}\right)$	
annuities	$A=M\left(\frac{(1+i)^{n}-1}{i}\right)$		

Sequences

arithmetic sequence	$t_{n}=t_{1}+(n-1) d$
geometric sequence	$t_{n}=t_{1} r^{(n-1)}$

Networks and matrices
Euler's formula $\quad v+f-e=2$

Trigonometry		$c^{2}=a^{2}+b^{2}$
Pythagoras' theorem	$\cos \theta=\frac{\text { adjacent }}{\text { hypotenuse }}$	$\sin \theta=\frac{\text { opposite }}{\text { hypotenuse }}$

Statistics

mean	$\bar{x}=\frac{\sum x_{i}}{n}$
median	$\left(\frac{n+1}{2}\right)^{\text {th }}$ data value
least-squares line (slope)	$b=\frac{\sum\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sum\left(x_{i}-\bar{x}\right)^{2}}=r \frac{s_{y}}{s_{x}}$
least-squares line (intercept)	$a=\bar{y}-b \bar{x}$
correlation coefficient (r)	$r=\frac{1}{n-1} \sum\left(\frac{x_{i}-\bar{x}}{s_{x}}\right)\left(\frac{y_{i}-\bar{y}}{s_{y}}\right)$
standard deviation	$s=\sqrt{\frac{\sum\left(x_{i}-\bar{x}\right)^{2}}{n-1}}$
outliers (identifying)	$Q_{1}-1.5 \times \mathrm{IQR} \leq x \leq Q_{3}+1.5 \times \mathrm{IQR}$

