Formula book

General Mathematics v1.2

Mensuration				
circumference of a circle	$C = 2\pi r$	area of a circle		$A = \pi r^2$
area of a parallelogram	A = bh	area of a trapezium		$A = \frac{1}{2}(a+b)h$
area of a triangle	$A = \frac{1}{2}bh$	total surface area of a cone		$S = \pi r s + \pi r^2$
total surface area of a cylinder	$S = 2\pi rh + 2\pi r^2$	surface area of a sphere		$S = 4\pi r^2$
volume of a cone	$V = \frac{1}{3}\pi r^2 h$	volume of a cylinder		$V = \pi r^2 h$
volume of a prism	V = Ah	volume of a pyramid		$V = \frac{1}{3}Ah$
volume of a sphere	$V = \frac{4}{3}\pi r^3$			
Heron's rule	$A = \sqrt{s(s-a)(s-b)(s-c)}$, where $s = \frac{a+b+c}{2}$			
Earth geometry	$D = 111.2 \times \text{angula}$	agular distance $D = 111.2\cos\theta \times \text{angular distance}$		

Finance				
simple interest	I = Pin	compound interest	$A = P(1+i)^n$	
effective annual rate of interest	$i_{\text{effective}} = \left(1 + \frac{i}{n}\right)^n - 1$	dividend yield	$\frac{\text{dividend}}{\text{share price}} \times 100$	
price to earnings ratio (of a share)	$P/E \text{ ratio} = \frac{\text{market price per share}}{\text{annual earnings per share}}$			
recurrence relation for reducing balance loans	$A_{n+1} = rA_n - R$	recurrence relation for compound interest	$A_{n+1} = rA_n$	
recurrence relation for annuities	$A_{n+1} = rA_n + d$			
annuities	$A = M\left(\frac{\left(1+i\right)^n - 1}{i}\right)$	$A = M \left(\frac{1 - (1 - 1)^2}{1 - 1}\right)$	$A = M \left(\frac{1 - \left(1 + i\right)^{-n}}{i} \right)$	

Sequences	
arithmetic sequence	$t_n = t_1 + (n-1)d$
geometric sequence	$t_n = t_1 r^{(n-1)}$

Networks and matrices		
Euler's formula	v+f-e=2	

Trigonometry			
Pythagoras' theorem	$c^2 = a^2 + b^2$		
trigonometric ratios	$\cos \theta = \frac{\text{adjacent}}{\text{hypotenuse}}$ $\sin \theta = \frac{\text{opposite}}{\text{hypotenuse}}$ $\tan \theta = \frac{\text{opposite}}{\text{adjacent}}$		
cosine rule	$c^2 = a^2 + b^2 - 2ab\cos C$		
sine rule	$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$		
area of a triangle	$area = \frac{1}{2}bc\sin A$		

Statistics	
mean	$\overline{x} = \frac{\sum x_i}{n}$
median	$\left(\frac{n+1}{2}\right)^{\text{th}}$ data value
least-squares line (slope)	$b = \frac{\sum (x_i - \overline{x})(y_i - \overline{y})}{\sum (x_i - \overline{x})^2} = r \frac{s_y}{s_x}$
least-squares line (intercept)	$a = \overline{y} - b\overline{x}$
correlation coefficient (r)	$r = \frac{1}{n-1} \sum \left(\frac{x_i - \overline{x}}{s_x} \right) \left(\frac{y_i - \overline{y}}{s_y} \right)$
standard deviation	$s = \sqrt{\frac{\sum (x_i - \overline{x})^2}{n - 1}}$
outliers (identifying)	$Q_1 - 1.5 \times IQR \le x \le Q_3 + 1.5 \times IQR$