General Mathematics marking guide

External assessment 2021

Short response (95 marks)

Assessment objectives

This assessment instrument is used to determine student achievement in the following objectives:

- 1. select, recall and use facts, rules, definitions and procedures drawn from Units 3 and 4
- 2. comprehend mathematical concepts and techniques drawn from Units 3 and 4
- 3. communicate using mathematical, statistical and everyday language and conventions
- 4. evaluate the reasonableness of solutions
- 5. justify procedures and decisions by explaining mathematical reasoning
- 6. solve problems by applying mathematical concepts and techniques drawn from Units 3 and 4.

Purpose

This marking guide:

- provides a tool for calibrating external assessment markers to ensure reliability of results
- indicates the correlation, for each question, between mark allocation and qualities at each level of the mark range
- informs schools and students about how marks are matched to qualities in student responses.

Mark allocation

Where a response does not meet any of the descriptors for a question or a criterion, a mark of '0' will be recorded.

Where no response to a question has been made, a mark of 'N' will be recorded.

Allowing for FT mark/s — refers to 'follow through', where an error in the prior section of working is used later in the response, a mark (or marks) for the rest of the response can be awarded so long as it still demonstrates the correct conceptual understanding or skill in the rest of the response.

This mark may be implied by subsequent working — the full mathematical reasoning and/or working, as outlined in the sample response and associated mark, is not explicitly stated in the student response, but by virtue of subsequent working there is sufficient evidence to award the mark/s.

Marking guide

Paper 1: Multiple choice

Question	Response
1	С
2	В
3	D
4	D
5	С
6	А
7	А
8	В
9	С
10	D
11	В
12	D
13	С
14	Α
15	В

Paper 1: Short response

Q	Sample response	The response:
17	$A = 720\ 000$	
	M = 2	
	$\frac{1}{10} = \frac{0.048}{100} = 0.004$	
	$r = \frac{12}{12} = 0.004$	
	$n = 25 \times 12 = 300$	• correctly determines the <i>i</i> and <i>n</i> values [1 mark]
	$A = M\left(\frac{1 - (1 + i)^{-n}}{i}\right)$	
	$A = M\left(\frac{1 - (1 + 0.004)^{-300}}{0.004}\right)$	• substitutes into appropriate annuity rule [1 mark]
	$720\ 000 = M \times 174.520\dots$	
	$M = \frac{720000}{174520}$	
	$M = 4125.578 \dots$	 determines monthly repayment [1 mark]
	The monthly repayment will be \$4126 each month for 25 years.	 states solution to the nearest dollar [1 mark]

Q	Sample response	The response:
18a)	Let $x =$ the number of years since 2014 Let $y =$ the business's annual profit (in \$'000s)	 correctly defines the variables [1 mark]
	y = 4.286x + 34.267	 correctly determines the equation of the least-squares line [1 mark]
18b)	For 2021, $x = 7$ $\therefore y = 4.286 \times 7 + 34.267$ = 64.269	• correctly determines the <i>x</i> value [1 mark]
	The business will make \$64 300 .	• determines profit [1 mark]

Q	Sample response	The response:
19a)	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	 correctly translates the information into a network diagram [1 mark] correctly labels each activity letter and duration [1 mark] provides evidence of forward and backward scanning [1 mark]
19b)	BDGH	 determines critical path [1 mark]
19c)	22 days	determines shortest time [1 mark]
20	Option 1: Arithmetic sequence $t_1 = 45\ 100$ d = -2700 n = 10 $t_n = ?$ $t_n = t_1 + (n - 1)d$ $\therefore t_n = 45\ 100 - 2700(10 - 1)$ $\therefore = 20\ 800$ The tractor will be worth \$20\ 800.	 correctly identifies the model [1 mark] correctly identifies the parameters t₁, d and n [1 mark] substitutes values into appropriate model [1 mark] determines value of tractor, including units [1 mark]
	Option 2: Linear function $c = 45\ 100$ m = -2700 x = 9 y = mx + c $\therefore y = -2700 \times 9 + 45\ 100$ $= 20\ 800$ The tractor will be worth \$20\ 800.	 correctly identifies the model [1 mark] correctly identifies the parameters <i>c</i>, <i>m</i> and <i>x</i> [1 mark] substitutes values into appropriate model [1 mark] determines value of tractor, including units [1 mark]

Q	Sample response	The response:
21a)	Indi	• correctly identifies the federal electorate [1 mark]
21b)	Point A: 37.25° S 141.75° E Point B: 37.25° S 148.5° E	 correctly identifies the latitude for A and B (37.1° S to 37.3° S) [1 mark] correctly identifies the longitudes for A (141.6° E to 141.9° E) and B (148.3° E to 148.7° E) [1 mark]
	angular distance = 6.75°	• determines angular distance [1 mark]
	Distance is E–W $D = 111.2 \times cos\theta \times angular distance$	
	$= 111.2 \times \cos(37.25^{\circ}) \times 6.75^{\circ}$	 substitutes values into appropriate rule [1 mark]
	The points are approximately 600 km apart.	 states answer rounded to the nearest 100 km [1 mark]
22	Option 1: Recursion $i = \frac{4.8}{1200}$ = 0.004 $\therefore r = 1.004$ R = 278 $A_0 = 32000$ $A_0 = rA_0 = R$	 correctly determines the <i>i</i> value [1 mark]
	$ \stackrel{A_{n+1}}{\cdot} = 1.004 \times 32\ 000 - 278 $	• correctly substitutes into an appropriate rule [1 mark]
	$= 31\ 850$ $\therefore A_2 = 1.004 \times 31\ 850 - 278$ $= 31\ 699.4$	• substitutes for A ₂ using result from A ₁ [1 mark]
	After 2 months, Rosa owes \$31 699.40	• provides answer rounded to the nearest cent [1 mark]

Q	Sample response	The response:
	Option 2: Annuity $i = \frac{4.8}{1200}$ = 0.004 $\therefore r = 1.004$ R = 278 $P = 32\ 000$	 correctly determines the <i>i</i> value [1 mark]
	$A_n = P(1+i)^n - M\left(\frac{(1+i)^n - 1}{i}\right)$ $\therefore A_2 = 32\ 000(1.004)^2 - 278\left(\frac{1.004^2 - 1}{0.004}\right)$ $= 31\ 699.4$	 correctly substitutes into an appropriate compound interest rule [1 mark] correctly substitutes into an appropriate annuity rule [1 mark]
	After 2 months, Rosa owes \$31 699.40	• provides answer rounded to the nearest cent [1 mark]

Q	Sample response	The response:
23a)	L4 is not valid because the tank and the tap are on the same side of the line.	 correctly explains why L₄ is not a valid cut [1 mark]
23b)	$\begin{array}{l} L_1 \mbox{ capacity} = 20 + 22 + 15 = 57 \\ L_2 \mbox{ capacity} = 18 + 19 + 22 + 15 = 74 \\ L_3 \mbox{ capacity} = 18 + 8 + 10 = 36 \end{array}$	 correctly determines the L₁ capacity [1 mark] correctly determines the L₂ capacity [1 mark] correctly determines the L₃ capacity [1 mark]
24	 Non-linear form Seasonal cycle every 12 months 	 correctly identifies the non-linear form [1 mark] correctly identifies a seasonal pattern [1 mark]
	3. Positive long-term trend	• correctly identifies a positive long-term trend [1 mark]
25a)	Depart Brisbane 10:30 Mon 7/12 Flight: + 7:40 Arrive Singapore 18:10 UTC correction -2:00 = 16:10 4:10 pm in Singapore on Mon 7/12	 correctly adds the flight time [1 mark] correctly determines the local time, day and date in Singapore [1 mark]
25b)	Arrive Singapore 17:00 Mon 7/12 Flight: – 8:25 Depart Dubai 8:35 UTC correction –4:00	 correctly subtracts the flight time [1 mark]
	= 4:35 4:35 am in Dubai on Mon 7/12	 correctly determines the local time, day and date in Dubai [1 mark]

Paper 2: Short response

Q	Sample response	The response:
1	Home latitude = $14^{\circ}52'$ S Change time difference to angular difference Angle = $1\frac{13}{60} \times 15^{\circ}$	 correctly identifies the latitude [1 mark]
	= 18.25°	 correctly determines the angle [1 mark]
	Home longitude = $145^{\circ}29' - 18^{\circ}15'$ = $127^{\circ}14'$	 subtracts angle from longitude in same format [1 mark]
	Home coordinates are 14°52' S, 127°14' E	 determines longitude [1 mark]
2	Admin Class 1 Class 2 Class 2 Class 2 Class 2 Class 2 Class 2 Class 2 Class 2 Class 4 Tuckshop Not to scale Minimum spanning tree = $A - C1 - C3 - C4 - C2 - T - SS$ Total length = $(15 \times 3) + 20 + 25 + 45 = 135$ m Total cost = $135 \times 1200 = $162\ 000$	 correctly identifies a minimum spanning tree [1 mark] determines total length of minimum spanning tree [1 mark] OR cost of each arc of minimum spanning tree [1 mark] determines total cost [1 mark]
	Since $$155\ 000$ is less than $$162\ 000$, the school cannot afford the project.	 determines total cost [1 mark] determines if the school can afford the project [1 mark]

Q	Sample response	The response:
3	Value of regular contributions $M = 2500$ $i = \frac{3.6}{400}$ $= 0.009$ $n = 6 \times 4$ $= 24$ $A = M \left(\frac{(1+i)^n - 1}{i} \right)$ $= 2500 \left(\frac{(1.009)^{24} - 1}{0.009} \right)$ $= 66 639.94$ Value of extra payment	 correctly determines the <i>i</i> and <i>n</i> values [1 mark] substitutes into appropriate annuity rule [1 mark]
	Value of extra payment $P = 10\ 000$ $i = \frac{3.6}{400}$ = 0.009 $n = 2 \times 4$ = 8	
	$A = P(1 + i)^n$ = 10 000(1.009) ⁸ = 10 743.09	 substitutes into appropriate rule [1 mark]
	Total value = 66 639.94 + 10 743.09 = 77 383.03 = \$77 383	 determines sum of two values [1 mark] determines total value, rounded to the nearest dollar [1 mark]

Q	Sample response	The response:
4	Let $n =$ the number of years since 2019 Let $t_n =$ the amount of money	
	In 2020, $n = 1$ and $t_1 = 250$ In 2038, $n = 19$ and $t_{19} = 2750$	
	Find r $t_n = t_1 r^{(n-1)}$ $\therefore 2750 = 250 \times r^{18}$ $\therefore 11 = r^{18}$ $\therefore r = 1.1425$	 correctly substitutes the values into a geometric rule [1 mark]
	The geometric model for Model 1 $\therefore t_n = 250 \times 1.1425^{(n-1)}$	 determines geometric model for Model 1 [1 mark]
	The arithmetic model for Model 2 $t_n = t_1 + (n - 1)d$ $\therefore t_n = 126(n - 1)$	 correctly determines an arithmetic model for Model 2 [1 mark]
	Comparison of investments in 2030, $n = 11$ Model 1's amount in 2030, $t_{11} = 250 \times 1.1425^{10}$ = 947.33	
	Model 2's amount in 2030, $t_{11} = 126 \times 10$ = 1260	 determines the amounts for both models in 2030 [1 mark]
	Difference = $1260 - 947.33$ = 312.67 In 2030 Model 2 is \$313 more than Model 1.	 determines difference to nearest dollar [1 mark] shows logical organisation communicating key steps [1 mark]

Q	Sample response	The response:
5	Predicted data @ $x = 31$ $y_A - y_P = -0.75$ $119 - y_P = -0.75$ $\therefore y_P = 119.75$ Find b	 correctly determines the y_P value [1 mark]
	$b = r \frac{s_y}{s_x}$ $= 0.875 \times \frac{6}{4}$ $= 1.3125$	 correctly determines the b value [1 mark]
	Find a y = bx + a $119.75 = 1.3125 \times 31 + a$ $\therefore 79.0625 = a$	 determines a value [1 mark]
	Model: $y = 1.3125x + 79.0625$ Oldest patient @ $x = 40$ $y = 1.3125 \times 40 + 79.0625$ = 131.5625 Residual = 1.4 y = 131.5625 + 1.4 y = 132.9625	 determines predicted y value for oldest person [1 mark]
	The oldest person in the sample has a systolic blood pressure of 133.	 determines actual systolic blood pressure as a whole number [1 mark] shows logical organisation communicating key steps [1 mark]

Q	Sample response	The response:
6	Hungarian algorithm Matrix form PQR	
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	 correctly converts the network information into a matrix form [1 mark]
	Row reduction: $R_1 - (x + 6), R_2 - (x + 3), R_3 - x$ 0 $x - 3$ 1 0 $x + 1$ 2 0 $x + 1$ 3	 determines each matrix element by reducing each row [1 mark]
	Column reduction: $C_2 - (x - 3), C_3 - 1$ 0 0 0 0 4 1 0 4 2	 determines each matrix element by reducing each column [1 mark]
	Only 2 lines are needed to cover all the 0s; therefore, need to use Hungarian algorithm with minimum of 1. Add 1 to overlap, subtract 1 from uncovered.	 correctly applies Hungarian algorithm [1 mark]
	1 0 0 0 3 0 0 3 1	determines minimum allocation [1 mark]
	Bipartite graph A B C AQ BR CP	
	Total distance = $2x + 3 + x + 5 + x$ 32 = 4x + 8 24 = 4x x = 6 It is 6 km from C to P.	 determines <i>x</i> [1 mark] shows logical organisation communicating key steps [1 mark]

Q	Sample response	The response:
7	Let $n = \frac{\# \text{ of days}}{5}$ Let t_n = the total number of plays	 correctly defines the variables [1 mark]
	$ \begin{aligned} & \therefore \ t_1 = 8 \\ & r = \frac{12}{8} \\ & = 1.5 \end{aligned} $	• correctly determines the parameter <i>r</i> [1 mark]
	$ t_n = 8 \times 1.5^{(n-1)} $ At 60 days $ n = \frac{60}{5} $	 correctly determines a geometric (exponential) model [1 mark]
	= 12 Total number of plays (in 1000s) $\therefore t_{12} = 8 \times 1.5^{11}$ = 691 98	• determines total number of plays [1 mark]
	Total predicted income Income = 0.175×691980 = 121 096.5 cents	• determines income [1 mark]
	= \$1210.97 At least \$1000 is a reasonable prediction if plays continue as a geometric progression.	 evaluates reasonableness of solution [1 mark]

© State of Queensland (QCAA) 2021 Licence: https://creativecommons.org/licenses/by/4.0 | Copyright notice: www.qcaa.qld.edu.au/copyright — lists the full terms and conditions, which specify certain exceptions to the licence. | Attribution: © State of Queensland (QCAA) 2021