General Mathematics marking guide

External assessment 2021

Short response (95 marks)

Assessment objectives

This assessment instrument is used to determine student achievement in the following objectives:

1. select, recall and use facts, rules, definitions and procedures drawn from Units 3 and 4
2. comprehend mathematical concepts and techniques drawn from Units 3 and 4
3. communicate using mathematical, statistical and everyday language and conventions
4. evaluate the reasonableness of solutions
5. justify procedures and decisions by explaining mathematical reasoning
6. solve problems by applying mathematical concepts and techniques drawn from Units 3 and 4.

Purpose

This marking guide:

- provides a tool for calibrating external assessment markers to ensure reliability of results
- indicates the correlation, for each question, between mark allocation and qualities at each level of the mark range
- informs schools and students about how marks are matched to qualities in student responses.

Mark allocation

Where a response does not meet any of the descriptors for a question or a criterion, a mark of ' 0 ' will be recorded.

Where no response to a question has been made, a mark of ' N ' will be recorded.
Allowing for FT mark/s - refers to 'follow through', where an error in the prior section of working is used later in the response, a mark (or marks) for the rest of the response can be awarded so long as it still demonstrates the correct conceptual understanding or skill in the rest of the response.
This mark may be implied by subsequent working - the full mathematical reasoning and/or working, as outlined in the sample response and associated mark, is not explicitly stated in the student response, but by virtue of subsequent working there is sufficient evidence to award the mark/s.

Marking guide

Paper 1: Multiple choice

Question	Response
1	C
2	B
3	D
4	D
5	C
6	A
7	A
8	B
9	C
10	D
11	B
12	D
13	C
14	
15	

Paper 1: Short response

Q	Sample response	The response:
17	$A=720000$	
	$\begin{aligned} & M=? \\ & i=\frac{0.048}{12}=0.004 \\ & n=25 \times 12=300 \end{aligned}$	- correctly determines the i and n values [1 mark]
	$\begin{aligned} & A=M\left(\frac{1-(1+i)^{-n}}{i}\right) \\ & A=M\left(\frac{1-(1+0.004)^{-300}}{0.004}\right) \\ & 720000=M \times 174.520 \ldots \\ & M=\frac{720000}{174.520 \ldots} \\ & M=4125.578 \ldots \end{aligned}$	- substitutes into appropriate annuity rule [1 mark] - determines monthly repayment [1 mark]
	The monthly repayment will be $\$ 4126$ each month for 25 years.	- states solution to the nearest dollar [1 mark]

Q	Sample response	The response:
18a)	Let $x=$ the number of years since 2014 Let $y=$ the business's annual profit (in $\$$ '000s)	• correctly defines the variables [1 mark]
$y=4.286 x+34.267$	- correctly determines the equation of the least-squares line [1 mark]	
18b)	For $2021, x=7$ $\therefore y=4.286 \times 7+34.267$ $=64.269$ The business will make $\$ 64300$.	- correctly determines the x value [1 mark]

Q	Sample response	The response:
19a)		- correctly translates the information into a network diagram [1 mark] - correctly labels each activity letter and duration [1 mark] - provides evidence of forward and backward scanning [1 mark]
19b)	BDGH	- determines critical path [1 mark]
19c)	22 days	- determines shortest time [1 mark]
20	Option 1: Arithmetic sequence $\begin{aligned} & t_{1}=45100 \\ & d=-2700 \\ & n=10 \\ & t_{n}=? \end{aligned}$ $\begin{aligned} & t_{n}=t_{1}+(n-1) d \\ & \therefore t_{n}=45100-2700(10-1) \\ & \therefore=20800 \end{aligned}$ The tractor will be worth $\$ 20800$.	- correctly identifies the model [1 mark] - correctly identifies the parameters t_{1}, d and n [1 mark] - substitutes values into appropriate model [1 mark] - determines value of tractor, including units [1 mark]
	Option 2: Linear function $\begin{aligned} & c=45100 \\ & m=-2700 \\ & x=9 \\ & y=m x+c \\ & \therefore y=-2700 \times 9+45100 \\ & =20800 \end{aligned}$ The tractor will be worth $\$ 20800$.	- correctly identifies the model [1 mark] - correctly identifies the parameters c, m and x [1 mark] - substitutes values into appropriate model [1 mark] - determines value of tractor, including units [1 mark]

Q	Sample response	The response:
21a)	Indi	- correctly identifies the federal electorate [1 mark]

```
Option 2: Annuity
    \(i=\frac{4.8}{1200}\)
        \(=0.004\)
    \(\therefore r=1.004\)
    \(R=278\)
    \(P=32000\)
    \(A_{n}=P(1+i)^{n}-M\left(\frac{(1+i)^{n}-1}{i}\right)\)
    \(\therefore A_{2}=32000(1.004)^{2}-278\left(\frac{1.004^{2}-1}{0.004}\right)\)
        \(=31699.4\)
    After 2 months, Rosa owes \$31699.40
```

- correctly determines the i value [1 mark]
- correctly substitutes into an appropriate compound interest rule [1 mark]
- correctly substitutes into an appropriate annuity rule [1 mark]
- provides answer rounded to the nearest cent [1 mark]

Q	Sample response	The response:
23a)	L_{4} is not valid because the tank and the tap are on the same side of the line.	- correctly explains why L_{4} is not a valid cut [1 mark]
23b)	L_{1} capacity $=20+22+15=57$ L2 capacity $=18+19+22+15=74$ L3 capacity $=18+8+10=36$	- correctly determines the L_{1} capacity [1 mark] - correctly determines the L_{2} capacity [1 mark] - correctly determines the L_{3} capacity [1 mark]
24	1. Non-linear form 2. Seasonal cycle every 12 months 3. Positive long-term trend	- correctly identifies the non-linear form [1 mark] - correctly identifies a seasonal pattern [1 mark] - correctly identifies a positive long-term trend [1 mark]
25a)	Depart Brisbane 10:30 Mon 7/12 Flight: + 7:40 Arrive Singapore 18:10 UTC correction -2:00 = 16:10 4:10 pm in Singapore on Mon 7/12	- correctly adds the flight time [1 mark] - correctly determines the local time, day and date in Singapore [1 mark]
25b)	Arrive Singapore 17:00 Mon 7/12 Flight: - 8:25 Depart Dubai 8:35 UTC correction -4:00 $=4: 35$ 4:35 am in Dubai on Mon 7/12	- correctly subtracts the flight time [1 mark] - correctly determines the local time, day and date in Dubai [1 mark]

Paper 2: Short response

Q	Sample response	The response:
1	Home latitude $=14^{\circ} 52^{\prime} \mathrm{S}$ Change time difference to angular difference $\begin{aligned} & \text { Angle }=1 \frac{13}{60} \times 15^{\circ} \\ & =18.25^{\circ} \end{aligned}$ Home longitude $=145^{\circ} 29^{\prime}-18^{\circ} 15^{\prime}$ $=127^{\circ} 14^{\prime}$ Home coordinates are $14^{\circ} 52^{\prime} \mathrm{S}, 127^{\circ} 14^{\prime} \mathrm{E}$	- correctly identifies the latitude [1 mark] - correctly determines the angle [1 mark] - subtracts angle from longitude in same format [1 mark] - determines longitude [1 mark]
2	Minimum spanning tree $=A-C 1-C 3-C 4-C 2-T-S S$ Total length $=(15 \times 3)+20+25+45=135 \mathrm{~m}$ Total cost $=135 \times 1200=\$ 162000$ Since $\$ 155000$ is less than $\$ 162000$, the school cannot afford the project.	- correctly identifies a minimum spanning tree [1 mark] - determines - total length of minimum spanning tree [1 mark] OR - cost of each arc of minimum spanning tree [1 mark] - determines total cost [1 mark] - determines if the school can afford the project [1 mark]

Q	Sample response	The response:
4	Let $n=$ the number of years since 2019 Let $t_{n}=$ the amount of money In 2020, $n=1$ and $t_{1}=250$ $\ln 2038, n=19$ and $t_{19}=2750$ Find r $\begin{aligned} & t_{n}=t_{1} r^{(n-1)} \\ & \therefore 2750=250 \times r^{18} \\ & \therefore 11=r^{18} \\ & \therefore r=1.1425 \end{aligned}$ The geometric model for Model 1 $\therefore t_{n}=250 \times 1.1425^{(n-1)}$ The arithmetic model for Model 2 $\begin{aligned} & t_{n}=t_{1}+(n-1) d \\ & \therefore t_{n}=126(n-1) \end{aligned}$ Comparison of investments in 2030, $n=11$ Model 1's amount in 2030, $\begin{aligned} t_{11} & =250 \times 1.1425^{10} \\ & =947.33 \end{aligned}$ Model 2's amount in 2030, $\begin{aligned} t_{11} & =126 \times 10 \\ & =1260 \end{aligned}$ $\begin{aligned} \text { Difference } & =1260-947.33 \\ & =312.67 \end{aligned}$ In 2030 Model 2 is $\$ 313$ more than Model 1.	- correctly substitutes the values into a geometric rule [1 mark] - determines geometric model for Model 1 [1 mark] - correctly determines an arithmetic model for Model 2 [1 mark] - determines the amounts for both models in 2030 [1 mark] - determines difference to nearest dollar [1 mark] - shows logical organisation communicating key steps [1 mark]

Q	Sample response	The response:
6	Hungarian algorithm Matrix form $\begin{array}{lccc} & \mathrm{P} & \mathrm{Q} & \mathrm{R} \\ \mathrm{~A} & x+6 & 2 x+3 & x+7 \\ \text { B } & x+3 & 2 x+4 & x+5 \\ \text { C } & x & 2 x+1 & x+3 \end{array}$ Row reduction: $R_{1}-(x+6), R_{2}-(x+3), R_{3}-x$ $\begin{array}{lll} 0 & x-3 & 1 \\ 0 & x+1 & 2 \\ 0 & x+1 & 3 \end{array}$ Column reduction: $C_{2}-(x-3), C_{3}-1$ Only 2 lines are needed to cover all the 0s; therefore, need to use Hungarian algorithm with minimum of 1. Add 1 to overlap, subtract 1 from uncovered. Bipartite graph A B C AQ BR CP $\begin{aligned} & \text { Total distance }=2 x+3+x+5+x \\ & 32=4 x+8 \\ & 24=4 x \\ & x=6 \end{aligned}$ It is 6 km from C to P .	- correctly converts the network information into a matrix form [1 mark] - determines each matrix element by reducing each row [1 mark] - determines each matrix element by reducing each column [1 mark] - correctly applies Hungarian algorithm [1 mark] - determines minimum allocation [1 mark] - determines x [1 mark] - shows logical organisation communicating key steps [1 mark]

Licence: https://creativecommons.org/licenses/by/4.0 Copyright notice: www.qcaa.qld.edu.au/copyright - lists the full terms and conditions, which specify certain exceptions to the licence. | Attribution: © State of Queensland (QCAA) 2021

